14.已知函數(shù)f(x)=m(x+m+5),g(x)=2x-2,若任意的x∈R,總有f(x)<0或g(x)<0,則m的取值范圍是-6<m<0.

分析 畫出函數(shù)圖象,結(jié)合圖象求出m的范圍即可.

解答 解:結(jié)合題意,畫出圖象,如圖示:
,
若任意的x∈R,總有f(x)<0或g(x)<0,
顯然m<0,且1+m+5>0,即m>-6,
故答案為:-6<m<0.

點(diǎn)評 本題考查了數(shù)形結(jié)合思想,考查指數(shù)函數(shù)以及一次函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,已知AB∥CD,PA=AB=AD=2,DC=1,AD⊥AB,PD=PB=2$\sqrt{2}$,點(diǎn)M是PB的中點(diǎn).
(Ⅰ)證明:CM∥平面PAD;
(Ⅱ)求直線CM與平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+5,x≤-1}\\{{x}^{2},-1<x<1}\\{2x,x≥1}\end{array}\right.$.
(1)求f(-3)、f[f(-3)];  
(2)若f(a)=$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知冪函數(shù)y=f(x)過點(diǎn)(2,$\frac{{\sqrt{2}}}{2}$),則y=f(x)的解析式為f(x)=${x}^{-\frac{1}{2}}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)是(-∞,0)∪(0,+∞)上的偶函數(shù),x>0時(shí)f(x)=x-$\frac{1}{x}$,求x<0時(shí)f(x)的表達(dá)式,判斷f(x)在(-∞,0)上的單調(diào)性,并用定義給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若對任意實(shí)數(shù)x,不等式|x-3|+x-a>0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.a<0B.0<a<3C.a<3D.a>-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={1,2,3},則集合A的非空真子集的個(gè)數(shù)是( 。
A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=-13,d=2,則當(dāng)Sn取最小值時(shí),n等于( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知命題p:?x∈R,x2+2x+1>0,則?p是真命題(填“真命題”、“假命題”).

查看答案和解析>>

同步練習(xí)冊答案