7.曲線y=x2和曲線y2=x圍成的圖形面積是$\frac{1}{3}$.

分析 求得交點(diǎn)坐標(biāo),利用定積分的性質(zhì)可知:S=${∫}_{0}^{1}$($\sqrt{x}$-x2)dx,根據(jù)定積分的性質(zhì),即可求得圖形面積.

解答 解:由$\left\{\begin{array}{l}{y={x}^{2}}\\{y=\sqrt{x}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{x}_{1}=0}\\{{x}_{2}=1}\end{array}\right.$,
曲線y=x2和曲線y2=x的交點(diǎn)坐標(biāo)為:(0,0),(1,1),
∴曲線y=x2和曲線y2=x圍成的圖形面積S=${∫}_{0}^{1}$($\sqrt{x}$-x2)dx,
∴S=($\frac{2}{3}$${x}^{\frac{3}{2}}$-$\frac{1}{3}$x3)${丨}_{0}^{1}$=$\frac{2}{3}$-$\frac{1}{3}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查定積分的性質(zhì),考查定積分的定積分應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.按如圖程序框圖,若輸出結(jié)果為126,則判斷框內(nèi)為( 。
A.i<6B.i<7C.i<8D.i<9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.(x+2)6的展開(kāi)式中,x2的系數(shù)為( 。
A.40B.240C.80D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列說(shuō)法正確的個(gè)數(shù)為(  )
①在對(duì)分類(lèi)變量X和Y進(jìn)行獨(dú)立性檢驗(yàn)時(shí),隨機(jī)變量k2的觀測(cè)值k越大,則“X與Y相關(guān)”可信程度越;
②進(jìn)行回歸分析過(guò)程中,可以通過(guò)對(duì)殘差的分析,發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),以便及時(shí)糾正;
③線性回歸方程由n組觀察值(xk,yk)(k=1,2,3,…,n)計(jì)算而得,且其圖象一定經(jīng)過(guò)數(shù)據(jù)中心點(diǎn)$(\overline x,\overline y)$;
④若相關(guān)指數(shù)R2越大,則殘差平方和越小,模型擬合效果越差.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-1,0),B(0,2),C(2,0),D 為BC的中點(diǎn),則$\overrightarrow{AD}$=(2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知a,b∈R*,且ab2=4,則a+b的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)已知函數(shù)y=2sin(3x+2ϕ-$\frac{π}{3}}$)+b-2,(-π<ϕ<0)是R上的奇函數(shù),求點(diǎn)(ϕ,b)的坐標(biāo);
(2)已知函數(shù)y=2cos(3x+2ϕ-$\frac{π}{3}}$)+b,(ϕ、b∈R)是R上的偶函數(shù),求ϕ、b滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)自變量x∈R,下列各函數(shù)中是奇函數(shù)的是( 。
A.y=x+3B.y=-|x|C.y=-2x2D.y=x3+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若α∈(0,$\frac{π}{2}$),且sin2α+cos2α=$\frac{1}{4}$,則tanα=( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案