17.設(shè)數(shù)列{an}滿足a1=1,(n+1)an=(n-1)an-1(n≥2),則數(shù)列{an}的通項(xiàng)公式${a_n}=\frac{2}{{n({n+1})}}$.

分析 由(n+1)an=(n-1)an-1化簡可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,從而利用累乘法求解.

解答 解:∵(n+1)an=(n-1)an-1
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
∴$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{3}$,$\frac{{a}_{3}}{{a}_{2}}$=$\frac{2}{4}$,
$\frac{{a}_{4}}{{a}_{3}}$=$\frac{3}{5}$,
…,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
累乘可得,
$\frac{{a}_{2}}{{a}_{1}}$•$\frac{{a}_{3}}{{a}_{2}}$•$\frac{{a}_{4}}{{a}_{3}}$•…•$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$•$\frac{2}{4}$•$\frac{3}{5}$•…•$\frac{n-1}{n+1}$,
即an=$\frac{2}{n(n+1)}$,
故答案為:an=$\frac{2}{n(n+1)}$.

點(diǎn)評 本題考查了數(shù)列的性質(zhì)的判斷與應(yīng)用,同時(shí)考查了累乘法的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若$y=\frac{f(x)}{x}$在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”.
(1)若f(x)=ax2+ax是“一階比增函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)若f(x)是“一階比增函數(shù)”,求證:對任意x1,x2∈(0,+∞),總有f(x1)+f(x2)<f(x1+x2);
(3)若f(x)是“一階比增函數(shù)”,且f(x)有零點(diǎn),求證:關(guān)于x的不等式f(x)>2015有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知-1,2,x成等比數(shù)列,則x=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.直線l的極坐標(biāo)方程為ρsin($\frac{π}{3}$-θ)=$\frac{\sqrt{3}}{2}$,橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cost}\\{y=\sqrt{3}sint}\end{array}\right.$(t為參數(shù)).
(1)求直線l的直角坐標(biāo)方程與橢圓C的普通方程;
(2)若直線l與橢圓C交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A={x|-1<x<2},B={x|x>1}.
(1)求A∩B和A∪B;
(2)定義A-B={x|x∈A且x∉B},求A-B和B-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在數(shù)列{an}中,a1=1,且對于任意自然數(shù)n,都有an+1=an+n,則a6=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行下面的程序框圖,如果輸入的t=0.01,則輸出的n=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.1+$\sqrt{3}$,x,1-$\sqrt{3}$三個(gè)數(shù)成等差數(shù)列,則x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.把函數(shù)$y=sin({x-\frac{π}{4}})$的圖象向右平移$\frac{π}{2}$個(gè)單位,得函數(shù)y=sin(x+θ)(0≤θ<2π)的圖象,則θ的值為$\frac{5π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案