9.在平面直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρ2-4ρcos θ+3=0,θ∈[0,2π).
(1)求C1的直角坐標方程;
(2)曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t為參數(shù)).求C1與C2的公共點的極坐標.

分析 (1)把ρ2=x2+y2,x=ρcosθ,代入曲線C1的極坐標方程可得直角坐標方程.
(2)由曲線C2的參數(shù)方程可知:此條直線經(jīng)過原點,傾斜角為$\frac{π}{6}$,因此C2的極坐標方程為θ=$\frac{π}{6}$或θ=$\frac{7π}{6}$,(ρ>0).分別代入C1的極坐標方程即可得出.

解答 解:(1)將$\left\{\begin{array}{l}{{ρ}^{2}={x}^{2}+{y}^{2}}\\{ρcosθ=x}\end{array}\right.$代入ρ2-4ρcos θ+3=0得:(x-2)2+y2=1.
(2)由題設(shè)可知,C2是過坐標原點,傾斜角為$\frac{π}{6}$的直線,
因此C2的極坐標方程為θ=$\frac{π}{6}$或θ=$\frac{7π}{6}$,ρ>0,
將θ=$\frac{π}{6}$代入C1:ρ2-2$\sqrt{3}$ρ+3=0,解得:ρ=$\sqrt{3}$.
將θ=$\frac{7π}{6}$代入C1得ρ=-$\sqrt{3}$,不合題意.
故C1,C2公共點的極坐標為($\sqrt{3}$,$\frac{π}{6}$).

點評 本題考查了直角坐標與極坐標的互化、參數(shù)方程化為普通方程、曲線的交點,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知sinα+cosα=$\frac{\sqrt{5}}{5}$,(α∈(-$\frac{π}{2}$,$\frac{π}{2}$)),則cos2α=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長,設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表.
年份20102011201220132014
時間代號t12345
儲蓄存款y(千元)567810
(1)求y關(guān)于t的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t-$\stackrel{∧}{a}$;
(2)用所求回歸方程預(yù)測該地區(qū)2015年(t=6)的人民幣儲蓄存款.(回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t-$\stackrel{∧}{a}$  中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=x2的定義域為D,其值域為{0,1,2,3,4,5},則這樣的函數(shù)f(x)有243個.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標系中,以坐標原點為極點,x軸為正半軸建立極坐標系,圓C的極坐標方程為ρ=6cosθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=-3+\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t為參數(shù)).
(1)求圓C的直角坐標方程;
(2)求直線l分圓C所得的兩弧程度之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,A,B,C的對邊分別為a,b,c,若a=3,cosA=-$\frac{1}{2}$,則△ABC的外接圓的面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x<-1或x>5},B={x|a≤x<a+4},且B?A,則實數(shù)a的取值范圍為(  )
A.(-∞,-5)∪(5,+∞)B.(-∞,-5)∪[5,+∞)C.(-∞,-5]∪[5,+∞)D.(-∞,-5]∪(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{x+3}{{{x^2}+6x+13}}$在區(qū)間[-2,2]上的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.方程mx2+2x+1=0至少有一個負根,則( 。
A.0<m<1或m<0B.0<m<1C.m<1D.m≤1

查看答案和解析>>

同步練習(xí)冊答案