10.若函數(shù)f(x)=$\frac{lnx}{x}$與函數(shù)g(x)=kx的圖象上存在關(guān)于原點(diǎn)對(duì)稱的點(diǎn),則實(shí)數(shù)k的最大值是( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{e}$D.$\frac{1}{2e}$

分析 求函數(shù)的導(dǎo)數(shù)根據(jù)函數(shù)的對(duì)稱性,進(jìn)行轉(zhuǎn)化,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的極值和最值進(jìn)行求解即可.

解答 解:設(shè)(a,$\frac{lna}{a}$),(a>0)為f(x)圖象上任意一點(diǎn),
則它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為(-a,-$\frac{lna}{a}$),由題意可知,-$\frac{lna}{a}$=-ka,
即方程$\frac{lna}{{a}^{2}}$=k有解,令h(x)=$\frac{lnx}{{x}^{2}}$,
又h′(x)=$\frac{1-2lnx}{{x}^{3}}$,
令h′(x)=0解得x=$\sqrt{e}$,當(dāng)x在(0,+∞)內(nèi)變化時(shí),h′(x),h(x)變化如表:

x(0,$\sqrt{e}$)$\sqrt{e}$($\sqrt{e}$,+∞)
h′(x)+0-
h(x)極大值$\frac{1}{2e}$
由表知,當(dāng)x=$\sqrt{e}$時(shí),函數(shù)h(x)有最大值,且最大值為$\frac{1}{2e}$.
故選:D

點(diǎn)評(píng) 本題主要考查函數(shù)最值是求解,根據(jù)條件進(jìn)行轉(zhuǎn)化,利用構(gòu)造法構(gòu)造函數(shù),然后利用導(dǎo)數(shù)研究函數(shù)的最值是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知四棱錐S-ABCD是底面邊長(zhǎng)為$2\sqrt{3}$的菱形,且$∠BAD=\frac{π}{3}$,若$∠ASC=\frac{π}{2}$,SB=SD
(1)求該四棱錐體積的取值范圍; 
(2)當(dāng)點(diǎn)S在底面ABCD上的射影為三角形ABD的重心G時(shí),求直線SA與平面SCD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c,已知sin(A-$\frac{π}{6}$)=cosA,且a=3,則b+c的最大值是( 。
A.6B.5C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若x,y滿足$\left\{\begin{array}{l}x-y≤0\;,\;\;\\ x+y≤1\;,\;\;\\ x≥0\;,\;\;\end{array}\right.$則z=x+2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是[-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\overrightarrow{a}$,$\overrightarrow$為非零向量,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,則一定有( 。
A.$\overrightarrow{a}$=$\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相同
C.$\overrightarrow{a}$=-$\overrightarrow$D.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相反

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a是實(shí)數(shù),函數(shù)f(x)=2a|x|+2x-a,若函數(shù)y=f(x)有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是a<-1或a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在?ABCD中,點(diǎn)E為邊AB的中點(diǎn),BD與CE交于點(diǎn)P,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R),則2x+y=$\frac{5}{3}$;若點(diǎn)Q是△BCP內(nèi)部(包括邊界)一動(dòng)點(diǎn),且$\overrightarrow{AQ}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$(m,n∈R),則m+2n的取值范圍為[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,某旅游景點(diǎn)有一座風(fēng)景秀麗的山峰,山上有一條筆直的山路BC和一條索道AC,小王和小李打算不坐索道,而是花2個(gè)小時(shí)的時(shí)間進(jìn)行徒步攀登,已知∠ABC=120°,∠ADC=150°,BD=1(千米),AC=3(千米).假設(shè)小王和小李徒步攀登的速度為每小時(shí)1250米,請(qǐng)問:兩位登山愛好者能否在2個(gè)小時(shí)徒步登上山峰.

查看答案和解析>>

同步練習(xí)冊(cè)答案