7.如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),PO垂直于圓O所在的平面,且PO=OB=1.則三棱錐P-ABC體積的最大值為$\frac{1}{3}$.

分析 設(shè)點(diǎn)C到直線AB的距離為dC,則點(diǎn)C為半圓$\widehat{AB}$的中點(diǎn)時(shí),dC取得最大值1.再利用體積計(jì)算公式即可得出.

解答 解:設(shè)點(diǎn)C到直線AB的距離為dC,則點(diǎn)C為半圓$\widehat{AB}$的中點(diǎn)時(shí),dC取得最大值1.
三棱錐P-ABC體積V=$\frac{1}{3}•OP$•S△ABC=$\frac{1}{3}×1×\frac{1}{2}×AB•waohzzk_{C}$=$\frac{1}{3}qynxtia_{C}$≤$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查了三棱錐的體積計(jì)算公式、三角形面積計(jì)算公式、圓的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,a=16,b=16$\sqrt{3}$,B+C=5A,則角C=90°或30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},0≤x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,存在x2>x1≥0,使得f(x1)=f(x2),則x1•f(x2)的取值范圍為( 。
A.[$\frac{1}{2}$,$\frac{3}{2}$)B.[$\frac{\sqrt{2}}{2}$,$\frac{3}{2}$)C.[$\frac{\sqrt{2}}{4}$,1)D.[1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=lg(\frac{2a}{1+x}-1)(a>0)$.求證:函數(shù)f(x)為奇函數(shù)的充要條件是a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\frac{(-1+i)(2+i)}{-i}$=-1-3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.以下四組函數(shù):
①f(x)=cosx,g(x)=-sinx                 ②f(x)=sinx+cosx,g(x)=f′(x)
③f(x)=ax,g(x)=2•ax(其中a>0且a≠1)④f(x)=log2x,g(x)=log2(4x)
可以通過平移f(x)的圖象得到g(x)圖象的是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB=2BC,AC=AA1=$\sqrt{3}$BC,則直線AB1與平面BB1C1C所成的角的正切值為(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{13}}{4}$D.$\frac{\sqrt{39}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A、B、C是球O的球面上三個(gè)動(dòng)點(diǎn),球的半徑為6,O為球心,若A、B、C、O不共面,則三棱錐O-ABC的體積取值范圍為( 。
A.(0,12]B.(0,24]C.(0,36]D.(0,48]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.分解因式a3-3a+2=( 。
A.(a-1)2(a+2)B.(a+1)2(a+2)C.(a-1)(a+1)(a-2)D.(a-1)2(a-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案