3.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x≤1}\\{lo{g}_{2}x,x>1}\end{array}\right.$,若f(a)>1,則a的取值范圍是(  )
A.(-∞,1)∪(2,+∞)B.(0,+∞)C.(2,+∞)D.(-∞,0)∪(2,+∞)

分析 根據(jù)分段函數(shù)的表達(dá)式,分別對(duì)a進(jìn)行分類討論即可得到結(jié)論.

解答 解:若a>1,由f(a)>1得l0g2a>1,即a>2,此時(shí)a>2,
若a≤1,則由f(a)>11得2-a>1,則-a>0,即a<0,此時(shí)a<0
綜上a>2或a<0,
即a的取值范圍是(-∞,0)∪(2,+∞),
故選:D

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)分段函數(shù)的表達(dá)式,對(duì)x進(jìn)行分類討論是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知非零向量$\overrightarrow a$、$\overrightarrow b$滿足$\left|{\overrightarrow a+\overrightarrow b}\right|=\left|{\overrightarrow a-\overrightarrow b}\right|=\frac{{2\sqrt{3}}}{3}\left|{\overrightarrow a}\right|$,則$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角為( 。
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2sin2A+3cos(B+C)=0.
(1)求角A的大。
(2)若△ABC的面積$S=5\sqrt{3},a=\sqrt{21}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{x}{lnx}-ax$.
(1)若函數(shù)f(x)的圖象在x=e2處的切線與y軸垂直,求實(shí)數(shù)a的值;
(2)a=1,x>1時(shí),求證:$f(x)•\frac{x-1}{x}<\frac{3-x}{2}$;
(3)若$?{x_1},{x_2}∈[{e,{e^2}}]$,使f(x1)-f′(x2)≤a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=|x-a|.
(1)當(dāng)a=2時(shí),解不等式f(x)≥7-|x-1|;
(2)若f(x)≤1的解集為[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0),求證:m+4n≥2$\sqrt{2}$+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1
(Ⅰ)求證:AD⊥平面BFED;
(Ⅱ)點(diǎn)P是線段EF上運(yùn)動(dòng),且$\frac{EP}{PF}$=2,求三棱錐E-APD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的各個(gè)面的面積中,最小的值為( 。
A.2$\sqrt{5}$B.8C.4$\sqrt{5}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知sin($\frac{3π}{2}$+α)=$\frac{3}{5}$,則sin($\frac{π}{2}$+2α)=(  )
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|$\frac{e}{x}$-lnx|,g(x)=|e1-x+lnx+a|
(1)將f(x)寫成分段函數(shù)的形式(不用說(shuō)明理由),并求f(x)的單調(diào)區(qū)間.
(2)若x≥1且-1-e1-x<a<-1,比較f(x)與g(x)的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案