16.若x2+x7=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7,則a1=9.

分析 根據(jù) x2+x7 =[1+(x-1)]2 +[1+(x-1)]7,再分別利用二項式定理展開可得a1的值.

解答 解:∵x2+x7=[1+(x-1)]2 +[1+(x-1)]7=[${C}_{2}^{0}$+${C}_{2}^{1}$ (x-1)+${C}_{2}^{2}$•(x-1)2]
+[${C}_{7}^{0}$+${C}_{7}^{1}$•(x-1)+…+${C}_{7}^{7}$•(x-1)7]=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7,
∴a1=${C}_{2}^{1}$+${C}_{7}^{1}$=9,
故答案為:9.

點評 本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)($\frac{1+i}{1-i}$)3的模是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為了研究鐘表與三角函數(shù)的關(guān)系,以9點與3點所在直線為x軸,以6點與12點為y軸,設(shè)秒針針尖指向位置P(x,y),若初始位置為P0($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),秒針從P0(注此時t=0)開始沿順時針方向走動,則點P的縱坐標(biāo)y與時間t(秒)的函數(shù)關(guān)系為( 。
A.y=sin($\frac{π}{30}$t+$\frac{π}{3}$)B.y=sin($\frac{π}{30}$t-$\frac{π}{3}$)C.y=sin(-$\frac{π}{30}$t+$\frac{π}{3}$)D.y=sin(-$\frac{π}{30}$t-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.兩人擲一枚硬幣,擲出正面多者為勝,但這枚硬幣質(zhì)地不均勻,以致出現(xiàn)正面的概率P1與出現(xiàn)反面的概率P2不相等,已知出現(xiàn)正面與出現(xiàn)反面是對立事件,設(shè)兩人各擲一次成平局的概率為P,則P與0.5的大小關(guān)系是( 。
A.P<0.5B.P=0.5C.P>0.5D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,等腰梯形ABCD,BC=$\frac{1}{2}$AD,將直徑為4的半圓內(nèi)的陰影部分以直徑AD所在直線為軸,旋轉(zhuǎn)一周得到一幾何體,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在數(shù)列{an}中,a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=3n,則an為(  )
A.an=3nB.an=3${\;}^{\frac{n(n+1)}{2}}$C.an=3${\;}^{\frac{n(n-1)}{2}}$D.an=3${\;}^{\frac{n}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an},a1=1,a2=2,前n項和為Sn,且滿足(Sn+2-Sn+1)-2(Sn+1-Sn)=2,n∈N*,則{an}的通項an=$\left\{\begin{array}{l}{1,n=1}\\{{2}^{n}-2,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.將單詞“l(fā)imit”字母重新組合,有多少種不同的排列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)的定義域是[0,3],則函數(shù)y=$\frac{f(2x-1)}{lg(2-x)}$的定義域是{x|$\frac{1}{2}$≤x<2且x≠1}.

查看答案和解析>>

同步練習(xí)冊答案