6.在極坐標(biāo)系下,已知圓C的極坐標(biāo)方程為:ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+7=0,直線l的極坐標(biāo)方程為3ρcosθ-4ρsinθ+a=0.若直線l與圓C相切,求實(shí)數(shù)a的值.

分析 圓C的直線l的直角坐標(biāo)方程分別為(x-2)2+(y-2)2=1,3x-4y+a=0,利用點(diǎn)到直線的距離公式建立方程,即可求實(shí)數(shù)a的值.

解答 解:圓C的直線l的直角坐標(biāo)方程分別為(x-2)2+(y-2)2=1,3x-4y+a=0.…(6分)
因?yàn)閳AC與直線l相切,所以d=$\frac{|6-8+a|}{5}$=1.…(8分)
解得.a(chǎn)=-3或a=7.…(10分)

點(diǎn)評(píng) 本題考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合A={1,2,3,5},集合A∩B={2,5},A∪B={1,2,3,4,5,6},則集合B=( 。
A.{2,5}B.[2,4,5}C.{2,5,6}D.{2,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知三角形的三個(gè)頂點(diǎn)為A(2,-1,2),B(3,2,-6),C(5,0,2),則BC邊上的中線長(zhǎng)為$2\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.$lg20×lg5+{lg^2}2-\frac{{{{log}_7}32}}{{{{log}_7}2}}$=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列四個(gè)函數(shù)在(-∞,0)是增函數(shù)的為( 。
A.f(x)=x2+4B.f(x)=1-2xC.f(x)=-x2-x+1D.f(x)=2-$\frac{3}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}$n2+$\frac{1}{2}n$,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列bn=2-nan求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$\vec a$=(1,2),$\vec b$=(2,y)且$\vec a$⊥$\vec b$,則$|{2\vec a+\vec b}$|=( 。
A.$2\sqrt{5}$B.$4\sqrt{5}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),對(duì)任意實(shí)數(shù)x有f(x+1)=f(x-1),當(dāng)0<x<1時(shí),f(x)=4x,則f(-$\frac{5}{2}$)+f(1)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知y=f(x)是奇函數(shù),若g(x)=f(x)+2,且g(lg2)=3,則g(lg$\frac{1}{2}$)=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案