17.如圖,AB是⊙O的直徑,AC,DE分別是⊙O的切線,切點分別為A,E,BC交⊙O于E.
(Ⅰ)證明:D為AC的中點;
(Ⅱ)若⊙O的半徑為$\sqrt{3}$,CE=1,求DE的長.

分析 (Ⅰ)連結(jié)AE,證明∠CDE=∠CED,得到CD=DA,即可證明:D為AC的中點;
(Ⅱ)由射影定理可得,AE2=CE•BE,求出AE,利用Rt三角形CEA,求DE的長.

解答 (Ⅰ)證明:連結(jié)AE,由已知得,AE⊥BC,AC⊥AB,
由DE,CA為圓O的切線,得∠DEA=∠B,∠DAE=∠B,
∴∠DEA=∠DAE,∴DE=DA
∵∠CAE+∠C=90°,∠CED+∠DEA=90°,
∴∠CDE=∠CED,
∴CD=DA,
∴D為AC的中點.…(5分)
(Ⅱ)解:在Rt三角形CAB中,由CE=1,AB=$2\sqrt{3}$,
設(shè) AE=x,則$BE=\sqrt{12-{x^2}}$,
由射影定理可得,AE2=CE•BE,
∴${x^2}=\sqrt{12-{x^2}}$,解得x=$\sqrt{3}$,
在Rt三角形CEA中,∵CA=2,又(Ⅰ)D為AC的中點,∴DE=1   …(10分)

點評 本題考查圓的切線的性質(zhì),考查射影定理,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知數(shù)列{an}的前n項和Sn=n2+an-1,則an=(  )
A.n-1B.n+1C.2n-1D.2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知拋物線的頂點為坐標原點,焦點是圓x2+(y-3)2=4的圓心,則拋物線的方程是( 。
A.y2=6xB.x2=6yC.y2=12xD.x2=12y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{1}{4}{x^2}-\frac{1}{a}x+ln(x+a)$,其中常數(shù)a>0.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)已知$0<a<\frac{1}{2}$,f'(x)表示f(x)的導數(shù),若x1,x2∈(-a,a),x1≠x2,且滿足f′(x1)+f′(x2)=0,試比較f′(x1+x2)與f′(0)的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.
如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)設(shè)$\overrightarrow{AD}$=λ$\overrightarrow{AB}$,異面直線AC1與CD所成角的余弦值為$\frac{{9\sqrt{10}}}{50}$,求λ的值;
(2)若點D是AB的中點,求二面角D-CB1-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$,( φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l1的極坐標方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,直線l2的極坐標方程為θ=$\frac{π}{2}$,l1與l2的交點為M.
(I)判斷點M與曲線C的位置關(guān)系;
(Ⅱ)點P為曲線C上的任意一點,求|PM|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{7}{2}$B.$\sqrt{10}$C.4D.$\frac{2+\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.為了解重慶某社區(qū)居民的家庭年收入和年支出的關(guān)系,隨機調(diào)查了5戶家庭,得到統(tǒng)計數(shù)據(jù)表,根據(jù)下表可得回歸直線方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=0.5$,$\widehata=\overline y-\widehatb\overline x$,據(jù)此估計,該社區(qū)一戶收入為18萬元家庭年支出為(  )
收入x(萬元)68101214
支出y(萬元)678910
A.15萬元B.14萬元C.13萬元D.12萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份2007200820092010201120122013
年份代號t1234567
人均純收入y2.93.33.64.44.85.25.9
(1)由以上數(shù)據(jù)經(jīng)計算得:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{1}{2}$,求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農(nóng)村居民家庭人均純收入.

查看答案和解析>>

同步練習冊答案