12.設(shè)全集U=R,函數(shù)f(x)=lg(|x+1|-1)的定義域?yàn)锳,集合B={x|sinπx=0},則(∁UA)∩B的元素個(gè)數(shù)為(  )
A.1B.2C.3D.4

分析 由對(duì)數(shù)式的真數(shù)大于0求得集合A,求解三角方程化簡(jiǎn)集合B,然后利用交、并、補(bǔ)集的混合運(yùn)算得答案.

解答 解:由|x+1|-1>0,得|x+1|>1,即x<-2或x>0.
∴A={x|x<-2或x>0},則∁UA={x|-2≤x≤0};
由sinπx=0,得:πx=kπ,k∈Z,∴x=k,k∈Z.
則B={x|sinπx=0}={x|x=k,k∈Z},
則(∁UA)∩B={x|-2≤x≤0}∩{x|x=k,k∈Z}={-2,-1,0}.
∴(∁UA)∩B的元素個(gè)數(shù)為3.
故選:C.

點(diǎn)評(píng) 本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對(duì)數(shù)函數(shù)的定義域,考查了三角函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.過(guò)點(diǎn)A(2,0)且垂直于極軸的直線L的極坐標(biāo)方程是ρcosθ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,其輸出結(jié)果是( 。
A.61B.62C.63D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知i是虛數(shù)單位,且復(fù)數(shù)z1=2+bi,z2=1-2i,若$\frac{z_1}{z_2}$是實(shí)數(shù),則實(shí)數(shù)b=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.執(zhí)行如圖所示的偽代碼,則輸出的結(jié)果的集合為{2,5,10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知1是lga與lgb的等比中項(xiàng),若a>1,b>1,則ab有( 。
A.最小值10B.最小值100C.最大值10D.最大值100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ y≥0\\ x+y≤4\end{array}$,則z=$\frac{2^x}{2^y}$的最小值為(  )
A.16B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)E(-$\frac{p}{2}$,0),動(dòng)點(diǎn)A,B均在拋物線C:y2=2px(p>0)上,若$\overrightarrow{EA}$•$\overrightarrow{EB}$的最小值為( 。
A.-2p2B.-p2C.0D.2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知kCnk=nCn-1k-1(1≤k≤n,且k,n∈N*)可以得到幾種重要的變式,如:$\frac{1}{k}C_{n-1}^{k-1}=\frac{1}{n}$Cnk,將n+1賦給n,就得到kCn+1k=(n+1)Cnk-1,…,進(jìn)一步能得到:1Cn1+2Cn2•21+…+nCnn•2n-1=nCn-10+nCn-11•21+nCn-12•22+…+nCn-1n-1•2n-1=n(1+2)n-1=n•3n-1
請(qǐng)根據(jù)以上材料所蘊(yùn)含的數(shù)學(xué)思想方法與結(jié)論,計(jì)算:Cn0×$\frac{1}{3}$+$\frac{1}{2}$Cn1×($\frac{1}{3}$)2+$\frac{1}{3}$Cn2×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$Cnn×($\frac{1}{3}$)n+1=$\frac{1}{n+1}[{(\frac{4}{3})^{n+1}}-1]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案