已知命題p:|x-a|<3,q:(x-1)(4-x)>0
(1)當(dāng)a=1時(shí),若“p且q”為真命題,求實(shí)數(shù)x的取值范圍;
(2)若非p是非q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
考點(diǎn):復(fù)合命題的真假,必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:(1)利用絕對值不等式的解法、一元二次不等式的解法即可化簡命題p,q,由“p且q”為真命題,可知:命題p與q都為真命題,即可得出.
(2)求出¬p,¬q,利用非p是非q的充分不必要條件,即可解出.
解答: 解:(1)當(dāng)a=1時(shí),命題p化為:-2<x<4,命題q化為:1<x<4,
∵“p且q”為真命題,
-2<x<4
1<x<4
,
解得1<x<4.
∴實(shí)數(shù)x的取值范圍是(1,4).
(2)¬p:x≤a-3或x≥a+3;
¬q:x≤1或x≥4,
∵非p是非q的充分不必要條件,
a-3≤1
a+3≥4
,
解得1≤a≤4.
點(diǎn)評:本題考查了絕對值不等式與一元二次不等式的解法、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

斜率為2的直線l過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn),且與雙曲線的左右兩支都相交,則雙曲線的離心率e的取值范圍是( 。
A、[2,+∞)
B、(1,
3
C、(1,
5
)
D、(
5
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a2=3,a5=6..
(1)求an;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Sn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知FF分別是雙曲線
x2
a2
-
y2
b2
=1的左右焦點(diǎn),P是雙曲線上任意一點(diǎn),
|PF2|2
|PF1|
的最小值為8a,則此雙曲線的離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,
1
2
,3),
b
=(
1
2
,1,1),且
a
,
b
均在平面α內(nèi),直線l的方向向量
υ
=(
1
2
,0,1),則( 。
A、l?αB、l與α相交
C、l∥αD、l?α或l∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A、B、C成等差數(shù)列,且A、B、C所對的邊分別為a、b、c,則下列命題中正確的有
 
(把所有正確的命題序號都填上.
①B=
π
3
;
②若a、b、c成等比數(shù)列,則△ABC為等邊三角形;
③若a=2c,則△ABC為銳角三角形;
④若
AB
2=
AB
AC
+
BA
BC
+
CA
CB
,則3A=C;
⑤若tan A+tan C+
3
>0,則△ABC為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列四個(gè)命題中
(1)若a⊥α,a?β,則α⊥β;
(2)若a∥α,α⊥β,則a⊥β;
(3)若a⊥β,α⊥β,則a∥α;
(4)若a⊥α,b⊥α,則a∥b.
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>0,c>d,則一定有( 。
A、a+c>b+d
B、a-c>b-d
C、ac>bd
D、
a
c
b
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a•2x-1-a
2x-1
為奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)求證:函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案