【題目】在流行病學(xué)調(diào)查中,潛伏期指自病原體侵入機體至最早臨床癥狀出現(xiàn)之間的一段時間.某地區(qū)一研究團隊從該地區(qū)500A病毒患者中,按照年齡是否超過60歲進行分層抽樣,抽取50人的相關(guān)數(shù)據(jù),得到如下表格:

潛伏期(單位:天)

數(shù)

60歲及以上

2

5

8

7

5

2

1

60歲以下

0

2

2

4

9

2

1

1)估計該地區(qū)500名患者中60歲以下的人數(shù);

2)以各組的區(qū)間中點值為代表,計算50名患者的平均潛伏期(精確到0.1);

3)從樣本潛伏超過10天的患者中隨機抽取兩人,求這兩人中恰好一人潛伏期超過12天的概率.

【答案】12(天)(3

【解析】

1)求出調(diào)查的50A病毒患者中,年齡在60歲以下的有20人,即得解;

(2)利用平均數(shù)公式計算即得解;(3)利用古典概型的概率公式求解即可.

1)調(diào)查的50A病毒患者中,年齡在60歲以下的有20人,

因此該地區(qū)A病毒患者中,60歲以下的人數(shù)估計有.

2(天)

3)樣本潛伏期超過10天的患者共六人,其中潛伏期在10~12天的四人編號為:1,2,3,4,潛伏期超過12天的兩人編號為:5,6

從六人中抽取兩人包括15個基本事件:1,2;1,3;1,41,5;16;23;24;2,52,63,4;3,5;36;4,54,65,6.

記事件“恰好一人潛伏期超過12天”為事件A,則事件A包括8個,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極小值.

(1)求實數(shù)的值;

(2)設(shè),其導(dǎo)函數(shù)為,若的圖象交軸于兩點,設(shè)線段的中點為,試問是否為的根?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是一個非空集合, 是定義在上的一個運算.如果同時滿足下述四個條件:

(1)對于,都有

(2)對于,都有

(3)對于,使得;

(4)對于,使得(注:“”同(iii)中的“”).

則稱關(guān)于運算構(gòu)成一個群.現(xiàn)給出下列集合和運算:

是整數(shù)集合, 為加法;②是奇數(shù)集合, 為乘法;③是平面向量集合, 為數(shù)量積運算;④是非零復(fù)數(shù)集合, 為乘法. 其中關(guān)于運算構(gòu)成群的序號是___________(將你認為正確的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且2的等差中項.數(shù)列中,,點在直線上.

1)求的值;

2)求數(shù)列的通項公式;

3)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)參加社會實踐活動,隨機調(diào)查了某小區(qū)5個家庭的年可支配收入x(單位:萬元)與年家庭消費y(單位:萬元)的數(shù)據(jù),制作了對照表:

x/萬元

2.7

2.8

3.1

3.5

3.9

y/萬元

1.4

1.5

1.6

1.8

2.2

由表中數(shù)據(jù)得回歸直線方程為,得到下列結(jié)論,其中正確的是(

A.若某戶年可支配收入為4萬元時,則年家庭消費約為2.3萬元

B.若某戶年可支配收入為4萬元時,則年家庭消費約為2.1萬元

C.若年可支配收入每增加1萬元,則年家庭消費相應(yīng)平均增加0.5萬元

D.若年可支配收入每增加1萬元,則年家庭消費相應(yīng)平均增加0.1萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元.該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸.

1)列出甲、乙兩種產(chǎn)品滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

2)在一個生產(chǎn)周期內(nèi)該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸時可獲得利潤最大,最大利潤是多少?

(用線性規(guī)劃求解要畫出規(guī)范的圖形及具體的解答過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當時,求曲線在點處的切線方程.

)如果函數(shù)上單調(diào)遞減,求的取值范圍.

)當時,討論函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱形的邊長為6, ,.將棱形沿對角線折起,得到三棱錐,點是棱的中點, .

(Ⅰ)求證:∥平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形CDEF是正方形,四邊形ABCD為直角梯形,∠ADC90°,ABDC,平面CDEF⊥平面ABCD,ABADCDa,MFB上,且BD∥平面ECM

1)求證:MBF中點;

2)求證:平面BCF⊥平面EMC

3)求直線CD與平面ECM所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案