A. | $\frac{7}{4}$,$-\frac{1}{4}$ | B. | $\frac{7}{4}$,-2 | C. | 2,$-\frac{1}{4}$ | D. | 2,-2 |
分析 由題意可得y=-(cosx-1)2+2,且cosx∈[-1,$\frac{1}{2}$],再利用二次函數(shù)的性質(zhì)求得y的最大值和最小值.
解答 解:∵函數(shù)$y={sin^2}x+2cosx(\frac{π}{3}≤x≤\frac{4π}{3})$=1-cos2x+2cosx=-(cosx-1)2+2,∴cosx∈[-1,$\frac{1}{2}$],
故當(dāng)cosx=-1時,即x=π時,函數(shù)y取得最小值為-4+2=-2,
當(dāng)cosx=$\frac{1}{2}$時,即x=$\frac{π}{3}$時,函數(shù)y取得最大值為-$\frac{1}{4}$+2=$\frac{7}{4}$,
故選:B.
點(diǎn)評 本題主要考查余弦函數(shù)的定義域和值域,二次函數(shù)的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) | 40 |
P(χ2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
理科 | 文科 | |
男 | 14 | 10 |
女 | 6 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -211 | B. | -210 | C. | 211 | D. | 210-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com