12.化簡(jiǎn)$\frac{sin(α+π)cos(π-α)sin(\frac{5}{2}π-α)}{tan(-α)co{s}^{2}(-α-2π)}$=-cosα.

分析 由誘導(dǎo)公式和同角三角函數(shù)基本關(guān)系逐步化簡(jiǎn)可得.

解答 解:由誘導(dǎo)公式和同角三角函數(shù)基本關(guān)系化簡(jiǎn)可得:
$\frac{sin(α+π)cos(π-α)sin(\frac{5}{2}π-α)}{tan(-α)co{s}^{2}(-α-2π)}$
=$\frac{(-sinα)(-cosα)cosα}{-\frac{sinα}{cosα}•co{s}^{2}α}$
=-cosα,
故答案為:-cosα.

點(diǎn)評(píng) 本題考查三角函數(shù)化簡(jiǎn),涉及誘導(dǎo)公式和同角三角函數(shù)基本關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.由x=0,y=x3,y=1所圍成的平面圖形繞y軸旋轉(zhuǎn)一周,所得幾何體體積是$\frac{3π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,點(diǎn)A是橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$上動(dòng)點(diǎn),點(diǎn)P在直線OA上,且$\overrightarrow{OA}•\overrightarrow{OP}=6$,則線段OP在x軸上的投影的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某小學(xué)五年級(jí)一次考試中,五名同學(xué)的語(yǔ)文、英語(yǔ)成績(jī)?nèi)绫硭荆?br />
學(xué)生A1A2A3A4A5
語(yǔ)文(x分)8991939597
英語(yǔ)(y分)8789899293
(1)請(qǐng)?jiān)谙聢D的直角坐標(biāo)系中作出這些數(shù)據(jù)的散點(diǎn)圖,并求出這些數(shù)據(jù)的回歸方程;
(2)要從4名語(yǔ)文成績(jī)?cè)?0分以上的同學(xué)中選2人參加一項(xiàng)活動(dòng),以X表示選中的同學(xué)的英語(yǔ)成績(jī)高于90分的人數(shù),求隨機(jī)變量X不小于1的概率.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如果函數(shù)f(x)=$\frac{1}{2}$(m-2)x2+(n-8)x+1(m≥0,n≥0)在區(qū)間[1,2]上單調(diào)遞減,則3m+2n的最大值為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)p:?x∈R,x2-4x+3m>0,q:f(x)=x3+2x2+mx+1在(-∞,+∞)內(nèi)單調(diào)遞增,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{6}}{3}$,橢圓C過(guò)點(diǎn)G($\sqrt{2}$,$\frac{\sqrt{3}}{3}$),B為橢圓C的上頂點(diǎn),過(guò)點(diǎn)B的兩條直線與橢圓C分別交于M,N兩點(diǎn),且直線BM與BN的斜率的積為$\frac{2}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)橢圓C上存在點(diǎn)P使得OP∥MN(O為坐標(biāo)原點(diǎn)),求△MNP面積的最大值,并求此時(shí)直線MN的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為了了解某天甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,
測(cè)量產(chǎn)品中的微量元素x,y的含量(單位:微克),當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品.已知該天甲廠生產(chǎn)的產(chǎn)品共有98件,如表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào) 1 2 3 4 5
 x 169 178 166 175 180
 y 75 80 77 7081
(1)求乙廠該天生產(chǎn)的產(chǎn)品數(shù)量;
(2)用上述樣本數(shù)據(jù)統(tǒng)計(jì)乙廠該天生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽取的上述5件產(chǎn)品中,隨機(jī)抽取2件.求抽取的2件產(chǎn)品中優(yōu)等品的件數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓C過(guò)點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱.
(1)求圓C的方程;
(2)求過(guò)Q(-3,2)的圓C的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案