【題目】已知橢圓的兩個焦點分別為, ,且經(jīng)過點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)的頂點都在橢圓上,其中關(guān)于原點對稱,試問能否為正三角形?并說明理由.
【答案】(Ⅰ) ;(Ⅱ) 不可能為正三角形,理由見解析.
【解析】試題分析:
(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為,依題意得,利用橢圓的定義可得,則橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)若為正三角形,則且,
顯然直線的斜率存在且不為0,設(shè)方程為,聯(lián)立直線方程與橢圓方程可得, ,則,同理可得.據(jù)此可得關(guān)于實數(shù)k的方程,方程無解,則不可能為正三角形.
試題解析:
(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為,
依題意得,
,
所以, ,
故橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)若為正三角形,則且,
顯然直線的斜率存在且不為0,
設(shè)方程為,
則的方程為,聯(lián)立方程,
解得, ,
所以,
同理可得.
又,所以,
化簡得無實數(shù)解,
所以不可能為正三角形.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: +y2=1與直線l:y=kx+m相交于E、F兩不同點,且直線l與圓O:x2+y2= 相切于點W(O為坐標(biāo)原點).
(1)證明:OE⊥OF;
(2)設(shè)λ= ,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右準(zhǔn)線方程為,又離心率為,橢圓的左頂點為,上頂點為,點為橢圓上異于任意一點.
(1)求橢圓的方程;
(2)若直線與軸交于點,直線與軸交于點,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上的動點, 的坐標(biāo)為, 在線段的中點.
(Ⅰ)求的軌跡的方程.
(Ⅱ)過點的直線與交于兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長線與AB的延長線交于點E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6 ,求BC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, 兩兩垂直且相等,過的中點作平面∥,且分別交PB,PC于M、N,交的延長線于.
(Ⅰ)求證: 平面;
(Ⅱ)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: =1的離心率e= ,動點P在橢圓C上,點P到橢圓C的兩個焦點的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為 =λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過橢圓C上動點P的切線l交橢圓C2于A,B兩點,O為坐標(biāo)原點,試證明當(dāng)切線l變化時|PA|=|PB|并研究△OAB面積的變化情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線上,且圓經(jīng)過點與點.
(1)求圓的方程;
(2)過點作圓的切線,求切線所在的直線的方程.
【答案】(1);(2)或.
【解析】試題分析:(1)求出線段的中點,進(jìn)而得到線段的垂直平分線為,與聯(lián)立得交點,∴.則圓的方程可求
(2)當(dāng)切線斜率不存在時,可知切線方程為.
當(dāng)切線斜率存在時,設(shè)切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.
試題解析:((1)設(shè) 線段的中點為,∵,
∴線段的垂直平分線為,與聯(lián)立得交點,
∴.
∴圓的方程為.
(2)當(dāng)切線斜率不存在時,切線方程為.
當(dāng)切線斜率存在時,設(shè)切線方程為,即,
則到此直線的距離為,解得,∴切線方程為.
故滿足條件的切線方程為或.
【點睛】本題考查圓的方程的求法,圓的切線,中點弦等問題,解題的關(guān)鍵是利用圓的特性,利用點到直線的距離公式求解.
【題型】解答題
【結(jié)束】
20
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本(單位:萬元)與產(chǎn)品銷售收入(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(銷售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求關(guān)于的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?
相關(guān)公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對男女學(xué)生是否喜愛古典音樂進(jìn)行了一個調(diào)查,調(diào)查者對學(xué)校高三年級隨機抽取了100名學(xué)生,調(diào)查結(jié)果如表:
喜愛 | 不喜愛 | 總計 | |
男學(xué)生 | 60 | 80 | |
女學(xué)生 | |||
總計 | 70 | 30 |
附:K2=
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取10名學(xué)生,再從這10名學(xué)生中隨機抽取5名學(xué)生去某古典音樂會的現(xiàn)場觀看演出,求正好有X個男生去觀看演出的分布列及期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com