分析 (1)由線面平行的性質(zhì)可得AB∥MN,故而AB∥平面PMN;
(2)由勾股定理的逆定理得出AB⊥AC,故而MN⊥AC,由M為BC中點(diǎn)可得N為AC中點(diǎn),于是PN⊥AC,從而AC⊥平面PMN,得出平面ABC⊥平面PMN.
解答 證明:(1)∵M(jìn)N∥平面PAB,MN?平面ABC,平面ABC∩平面PAB=AB,
∴MN∥AB,又MN?平面PMN,AB?平面PMN,
∴AB∥平面PMN.
(2)∵AB∥MN,M是BC的中點(diǎn),∴N是AC的中點(diǎn).
∴AB=2MN=2$\sqrt{3}$.又BC=4,AC=2.
∴AB2+AC2=BC2,即AB⊥AC.
∴MN⊥AC,
又N是AC的中點(diǎn),PA=PC,
∴PN⊥AC,
∵M(jìn)N?平面PMN,PN?平面PMN,MN∩PN=N,
∴AC⊥平面PMN.又AC?平面ABC,
∴平面ABC⊥平面PMN.
點(diǎn)評 本題考查了線面平行的性質(zhì)與判定,面面垂直的判定,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | e | D. | 2e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com