6.如圖是某班8位學(xué)生詩朗誦比賽得分的莖葉圖,那么這8位學(xué)生得分的平均分為91.

分析 根據(jù)平均數(shù)的定義求解即可.

解答 解:根據(jù)莖葉圖,得:
該同學(xué)得分的平均數(shù)是:
$\overline{X}$=$\frac{1}{8}$×(85+88+90+91+92+92+94+96)=91.
故答案為:91.

點(diǎn)評 本題考查了利用莖葉圖求平均數(shù)的應(yīng)用問題,是基礎(chǔ)題目,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足:$\left\{{\begin{array}{l}{x-2y+1≥0}\\{x<2}\\{x+y-1≥0}\end{array}}\right.$,z=2x-2y-1,則z的取值范圍是[-$\frac{5}{3}$,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在三棱錐P-ABC中,PA=PC,BC=4,AC=2.M為BC的中點(diǎn),N為AC上一點(diǎn),且MN∥平面PAB,MN=$\sqrt{3}$.求證:
(1)直線AB∥平面PMN;
(2)平面ABC⊥平面PMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow$=(cosx,-1).
(1)當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時,求cos2x-sin2x的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$,已知f($\frac{α}{2}$)=$\frac{3}{4}$,α∈($\frac{π}{2}$,π),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.根據(jù)如圖所示的偽代碼,已知輸出值為1,則輸入值x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,|${\overrightarrow{AB}$+$\overrightarrow{AC}}$|=|${\overrightarrow{AB}$-$\overrightarrow{AC}}$|,AB=4,AC=2,E,F(xiàn)為線段BC的三等分點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$=( 。
A.$\frac{10}{9}$B.4C.$\frac{40}{9}$D.$\frac{56}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=$\frac{1}{3}$x3+ax2+bx+c(a,b,c∈R)的導(dǎo)函數(shù)的圖象如圖所示:
(1)求a,b的值并寫出f(x)的單調(diào)區(qū)間;
(2)函數(shù)y=f(x)有三個零點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=4cosxsin(x-$\frac{π}{6}$),x∈R.
(I)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(II)在△ABC中,BC=4,sinC=2sinB,若f(x)的最大值為f(A),求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案