4.方程|x2-4x+3|=a有且僅有三個(gè)不等實(shí)數(shù)根,則實(shí)數(shù)a滿足(  )
A.a=1B.a>1或a=0C.0<a≤1D.0<a<1

分析 把問題轉(zhuǎn)化為函數(shù)y=|x2-4x+3|與直線y=a有3個(gè)交點(diǎn),畫出圖象即可解決問題.

解答 解:∵方程|x2-4x+3|=a有三個(gè)實(shí)數(shù)根,
∴可以看成函數(shù)y=|x2-4x+3|與直線y=a有3個(gè)交點(diǎn)即可.
函數(shù)y=|x2-4x+3|的圖象如圖所示,
∵y′=x2-4x+3的頂點(diǎn)D坐標(biāo)為(2,-1),D關(guān)于x軸對(duì)稱點(diǎn)的坐標(biāo)D′(2,1),
由圖象可知,a=1時(shí),函數(shù)y=|x2-4x+3|與直線y=a有3個(gè)交點(diǎn),
∴a=1.
故選:A.

點(diǎn)評(píng) 本題考查二次函數(shù)與x軸交點(diǎn)問題,解題的關(guān)鍵是畫出函數(shù)y=|x2-4x+3|的圖象,利用圖象法解決問題,屬于?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知兩個(gè)球的表面積之比為1:3,則這兩個(gè)球的體積之比為( 。
A.1:9B.1:3$\sqrt{3}$C.1:3D.1:$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在等腰直角三角形ABC的斜邊AB上任取一點(diǎn)M.求使AM<AC的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,AB=5,AC=7,∠A=60°,G是重心,過G的平面α與BC平行,AB∩α=M,AC∩α=N,則MN=( 。
A.$\frac{8}{3}$B.$\frac{3}{8}$C.$\frac{4}{3}$D.$\frac{{2\sqrt{39}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向前運(yùn)動(dòng),其路程fi(x)(i=1,2,3,4)關(guān)于時(shí)間x(x>1)的函數(shù)關(guān)系是f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=2x,如果它們一直運(yùn)動(dòng)下去,最終在最前面的物體具有的函數(shù)關(guān)系是f4(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$),$\overrightarrow$=(1,$\sqrt{3}$),$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow$,若$\overrightarrow{x}$與$\overrightarrow{y}$垂直,則k可用t的表達(dá)式表示為k=4t(t2-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l:(m-2)x-y-3m+5=0(m∈R)和圓C:x2+y2-8x+4y+16=0.
(1)若m∈[1,2],求直線l的傾斜角的取值范圍;
(2)設(shè)直線l和圓C相交于A,B兩點(diǎn),求以AB為直徑且面積最小的圓的標(biāo)準(zhǔn)方程,并求出對(duì)應(yīng)的m值;
(3)直線l能否將圓C分割成弧長(zhǎng)的比值為$\frac{1}{2}$的兩段圓。咳绻,請(qǐng)求出直線l的方程;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在數(shù)列{an}中,a1=2且$|{\begin{array}{l}1&3\\{{a_{n+1}}}&{a_n}\end{array}}|$=0,若Sn是{an}的前n項(xiàng)和,則$\lim_{n→∞}{S_n}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖:在四棱錐P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=DA=DC=2.
(1)若M、N分別是PD、AB的中點(diǎn),證明:MN∥平面PBC;
(2)求二面角C-BP-D的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案