2.某初級(jí)中學(xué)有學(xué)生111人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要利用抽樣方法取10人參加某項(xiàng)調(diào)查,考慮選用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為1,2,…,270;使用系統(tǒng)抽樣時(shí),將學(xué)生統(tǒng)一隨機(jī)編號(hào)1,2,…,270,并將整個(gè)編號(hào)依次分為10段  如果抽得號(hào)碼有下列四種情況:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
關(guān)于上述樣本的下列結(jié)論中,正確的是( 。
A.②、③都不能為系統(tǒng)抽樣B.②、④都不能為分層抽樣
C.①、③都可能為分層抽樣D.①、④都可能為系統(tǒng)抽樣

分析 根據(jù)所給的四組數(shù)據(jù)的特點(diǎn),結(jié)合系統(tǒng)抽樣中各數(shù)據(jù)的間隔是相等的,簡(jiǎn)單隨機(jī)抽樣與分層抽樣沒(méi)有這一明顯特征,即可得出結(jié)論.

解答 解:觀察所給的四組數(shù)據(jù),
①,③兩組數(shù)據(jù)中的分段間隔相等,可能是系統(tǒng)抽樣或分層抽樣,
②該組數(shù)據(jù)中各數(shù)據(jù)的間隔沒(méi)有規(guī)律,應(yīng)是簡(jiǎn)單隨機(jī)抽樣,
④該組數(shù)據(jù)中分段間隔沒(méi)有規(guī)律,應(yīng)該不是系統(tǒng)抽樣和分層抽樣.
由此,符合題意的是選項(xiàng)C.
故選:C.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單隨機(jī)抽樣與系統(tǒng)抽樣、分層抽樣方法的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}中,a1=2,an=3an-1+2(n≥2,n∈N*),數(shù)列{bn}中,bn=an+1.
(Ⅰ)證明數(shù)列{bn}是等比數(shù)列,并求其通項(xiàng)公式;
(Ⅱ)若cn=$\frac{_{n}}{(_{n}+1)(_{n}+3)}$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.經(jīng)過(guò)點(diǎn)P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段沒(méi)有公共點(diǎn),則直線l的斜率k與傾斜角α的取值范圍分別是( 。
A.(-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{3π}{4}$)B.(-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)
C.(-1,1),[$\frac{π}{4}$,$\frac{3π}{4}$]D.(-1,1),[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若f(2x)=3x2+1,則函數(shù)f(4)=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義在N*的函數(shù)f(x)滿足f(1)=2且有f(n+1)=$\left\{\begin{array}{l}\frac{1}{2}f(n),n為偶數(shù)\\ f(n),n為奇數(shù)\end{array}$,則f(12)的值為( 。
A.$\frac{1}{32}$B.$\frac{1}{16}$C.$\frac{1}{64}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知四棱臺(tái)ABCD-A1B1C1D1的上、下底面分別是邊長(zhǎng)為3和6的正方形,AA1=6,且A1A⊥底面ABCD,點(diǎn)P、Q分別在棱DD1,BC上,BQ=4.
(1)若DP=$\frac{2}{3}$DD1,證明:PQ∥平面ABB1A1;
(2)若P是D1D的中點(diǎn),證明:AB1⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.冪函數(shù)y=x3在[1,2]上的最大值與最小值之和為( 。
A.10B.9C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=60°,則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.1B.2C.$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.算法程序框圖如圖所示,若$a=\frac{π}{2}$,$b={3^{\frac{1}{3}}}$,$c={({\sqrt{e}})^{ln3}}$,則輸出的結(jié)果是( 。
A.$\frac{a+b+c}{3}$B.aC.bD.c

查看答案和解析>>

同步練習(xí)冊(cè)答案