11.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=60°,則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.1B.2C.$\sqrt{3}$D.4

分析 即($\overrightarrow{a}-\overrightarrow$)2,開方即為|$\overrightarrow{a}-\overrightarrow$|.

解答 解:$\overrightarrow{a}•\overrightarrow$=1×2×cos60°=1,
∴($\overrightarrow{a}-\overrightarrow$)2=${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=3,
∴|$\overrightarrow{a}-\overrightarrow$|=$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z滿足:iz=i+z,則z=( 。
A.1+iB.1-iC.$\frac{1+i}{2}$D.$\frac{1-i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某初級(jí)中學(xué)有學(xué)生111人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要利用抽樣方法取10人參加某項(xiàng)調(diào)查,考慮選用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為1,2,…,270;使用系統(tǒng)抽樣時(shí),將學(xué)生統(tǒng)一隨機(jī)編號(hào)1,2,…,270,并將整個(gè)編號(hào)依次分為10段  如果抽得號(hào)碼有下列四種情況:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
關(guān)于上述樣本的下列結(jié)論中,正確的是(  )
A.②、③都不能為系統(tǒng)抽樣B.②、④都不能為分層抽樣
C.①、③都可能為分層抽樣D.①、④都可能為系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=sinx-$\frac{x}{2}$.當(dāng)0<x<1時(shí),不等式f(x)•log2(x-2m+$\frac{5}{4}$)>0恒成立.則實(shí)數(shù)m得到取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)a∈R,f(x)=|x-a|+(1-a)x.
(I)解關(guān)于a的不等式f(2)<0;
(Ⅱ)如果f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB,該四棱錐被一平面截去一部分后,剩余部分的三視圖如圖,則截去部分體積與剩余部分體積的比值為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如所示程序框圖所表達(dá)的算法,輸出的結(jié)果是 ( 。
A.80B.99C.116D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則下列結(jié)論成立的是(  )
A.f(x)的遞增區(qū)間是(2kπ-$\frac{5π}{12}$,2kπ+$\frac{π}{12}$),k∈Z
B.函數(shù)f(x-$\frac{π}{3}$)是奇函數(shù)
C.函數(shù)f(x-$\frac{π}{12}$)是偶函數(shù)
D.f(x)=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在長為2的線段AB上任意取一點(diǎn)C,以線段AC為半徑的圓面積小于π的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案