10.若f(2x)=3x2+1,則函數(shù)f(4)=13.

分析 由2x=4得x=2,代入解析式即可得到結(jié)論.

解答 解:∵f(2x)=3x2+1,
∴由2x=4得x=2,
即f(4)=f(2×2)=3×22+1=12+1=13,
故答案為:13.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,利用方程思想進(jìn)行求解是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow{a}=(1,1)$,$\overrightarrow$=($\sqrt{2}$,0),$\overrightarrow{c}$=(-2,$\sqrt{2}$),則$\overrightarrow{a}+\overrightarrow$與$\overrightarrow+\overrightarrow{c}$的位置關(guān)系是($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow$+$\overrightarrow{c}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若復(fù)數(shù)z滿足:iz=i+z,則z=(  )
A.1+iB.1-iC.$\frac{1+i}{2}$D.$\frac{1-i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.集合{a,b}的所有子集是:{a},,∅,{a,b}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.閱讀下列算法語(yǔ)句,則輸出結(jié)果為$\frac{31}{32}$.(用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^3},x≥0}\\{f(x+2),x<0}\end{array}}\right.$,則f(-5)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某初級(jí)中學(xué)有學(xué)生111人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要利用抽樣方法取10人參加某項(xiàng)調(diào)查,考慮選用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為1,2,…,270;使用系統(tǒng)抽樣時(shí),將學(xué)生統(tǒng)一隨機(jī)編號(hào)1,2,…,270,并將整個(gè)編號(hào)依次分為10段  如果抽得號(hào)碼有下列四種情況:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
關(guān)于上述樣本的下列結(jié)論中,正確的是( 。
A.②、③都不能為系統(tǒng)抽樣B.②、④都不能為分層抽樣
C.①、③都可能為分層抽樣D.①、④都可能為系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=sinx-$\frac{x}{2}$.當(dāng)0<x<1時(shí),不等式f(x)•log2(x-2m+$\frac{5}{4}$)>0恒成立.則實(shí)數(shù)m得到取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則下列結(jié)論成立的是( 。
A.f(x)的遞增區(qū)間是(2kπ-$\frac{5π}{12}$,2kπ+$\frac{π}{12}$),k∈Z
B.函數(shù)f(x-$\frac{π}{3}$)是奇函數(shù)
C.函數(shù)f(x-$\frac{π}{12}$)是偶函數(shù)
D.f(x)=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案