如圖所示為函數(shù)f(x)=2sin(ωx+φ)(ω>0,
π
2
≤φ≤π)的部分圖象,其中A,B分別是圖中的最高點(diǎn)和最低點(diǎn),且AB=5,那么ω+φ的值=
 
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:圖表型,三角函數(shù)的圖像與性質(zhì)
分析:先確定函數(shù)的周期,由圖可知AB=5,AB間的縱向距離為4,故可由勾股定理計(jì)算AB間的橫向距離,即半個(gè)周期,進(jìn)而得ω值,再利用函數(shù)圖象過點(diǎn)(0,1),且此點(diǎn)在減區(qū)間上,代入函數(shù)解析式即可求出φ值,故可計(jì)算ω+φ的值.
解答: 解:由圖可知函數(shù)的振幅為2,半周期為AB間的橫向距離,
T
2
=
52-42
=3,
∴T=6,即
ω
=6,
∴ω=
π
3
,
由圖象知函數(shù)過點(diǎn)(0,1),
∴1=2sinφ,
∴φ=2kπ+
π
6
,k∈Z,
π
2
≤φ≤π,
∴φ=
6
,
故ω+φ=
6

故答案為:
6
點(diǎn)評(píng):本題考查了三角函數(shù)的圖象和性質(zhì),由y=Asin(ωx+φ)的部分圖象確定其解析式的方法,三角函數(shù)周期,初相的意義,屬于基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,BC=2
3
,D,E分別為邊AC,AB上的中點(diǎn),|BD|+|CE|=6,BD與CE交于點(diǎn)G,以直線BC為x軸,邊BC的垂直平分線為y軸建立直角坐標(biāo)系,記動(dòng)點(diǎn)G形成的曲線為C
(1)求曲線C的方程;
(2)P,Q為曲線C上的兩動(dòng)點(diǎn),且OP⊥OQ
①求證:點(diǎn)O到直線PQ的距離為定值;②求|PQ|min

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1
(1)求證:AD1∥平面BDC1
(2)求證:平面AB1D1∥平面BDC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x||x-2|≤2},B={x|
x
x+1
>1},則∁R(A∩B)等于( 。
A、{x|0≤x≤4}B、R
C、{x|x<-1}D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<ax<2(a≥0)},B={x|-1<x<1},是否存在實(shí)數(shù)a滿足A⊆B,若存在,求出a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,B(-1,0),C(1,0),a,b,c為A,B,C所對(duì)的三條邊,若b,a,c成等差數(shù)列,求頂點(diǎn)A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和滿足an+1=
1
3
Sn,且a1=
1
4
(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(0,-1,1),
b
=(2,2,1),計(jì)算:
(1)|
a
|,|
b
|,|-3
a
|,|2
a
-
b
|;
(2)cos<
a
-
b
>;
(3)2
a
-
b
在-3
a
上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的x,y∈(0,+∞)都有f(xy)=f(x)+f(y)成立,當(dāng)x>1時(shí),f(x)>0.
(1)判斷f(x)的單調(diào)性;
(2)設(shè)f(3)=1,解不等式f(x)>f(x-1)+2.

查看答案和解析>>

同步練習(xí)冊答案