A. | (2012,+∞) | B. | (0,2012) | C. | (0,2016) | D. | (2016,+∞) |
分析 先構造函數g(x)=x2f(x),再根據導數和函數的單調性的關系得到g(x)在(0,+∞)為增函數,由(x-2014)2f(x-2014)-4f(2)>0得到g(x-2014)>g(2)根據函數的單調性即可求出答案
解答 解:令g(x)=x2f(x),
∴g′(x)=2xf(x)+x2f′(x),
∵2f(x)+x2f′(x)>0,
∴g′(x)>0,在(0,+∞)恒成立,
∴g(x)在(0,+∞)為增函數,
∵(x-2014)2f(x-2014)-4f(2)>0,
∴(x-2014)2f(x-2014)>4f(2),
∵g(2)=4f(2),
∴g(x-2014)>g(2)
∴$\left\{\begin{array}{l}{x-2014>2}\\{x-2014>0}\end{array}\right.$,
解得x>2016,
故選D.
點評 本題考查函數的單調性與導數的關系,兩個函數乘積的導數的求法,而構造函數是解本題的關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a3+a7≥b2+b6 | B. | a3+a7≤b2+b6 | ||
C. | a3+a7≠b2+b6 | D. | a3+a7與b2+b6 大小不確定 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com