16.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$,$\overrightarrow$的夾角為30°,($\overrightarrow{a}$+2$\overrightarrow$)∥(2$\overrightarrow{a}$+λ$\overrightarrow$),則(($\overrightarrow{a}$+λ$\overrightarrow$))•($\overrightarrow{a}$-$\overrightarrow$)=1.

分析 根據(jù)$(\overrightarrow{a}+2\overrightarrow)∥(2\overrightarrow{a}+λ\overrightarrow)$即可求出λ的值,然后進行向量數(shù)量積的運算便可求出$(\overrightarrow{a}+λ\overrightarrow)•(\overrightarrow{a}-\overrightarrow)$的值.

解答 解:$(\overrightarrow{a}+2\overrightarrow)∥(2\overrightarrow{a}+λ\overrightarrow)$;
∴$2\overrightarrow{a}+λ\overrightarrow=k(\overrightarrow{a}+2\overrightarrow)$;
∴$\left\{\begin{array}{l}{k=2}\\{λ=2k}\end{array}\right.$;
∴λ=4;
∴$(\overrightarrow{a}+λ\overrightarrow)•(\overrightarrow{a}-\overrightarrow)$
=$(\overrightarrow{a}+4\overrightarrow)•(\overrightarrow{a}-\overrightarrow)$
=${\overrightarrow{a}}^{2}+3\overrightarrow{a}•\overrightarrow-4{\overrightarrow}^{2}$
=$4+3×2×\sqrt{3}×\frac{\sqrt{3}}{2}-4×3$
=1.
故答案為:1.

點評 考查向量數(shù)量積的運算及計算公式,共線向量基本定理,以及平面向量基本定理.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.設函數(shù)f(x)是定義在(0,+∞)上的可導函數(shù),其導函數(shù)為f′(x),且有2xf(x)+x2f′(x)>0,則不等式(x-2014)2f(x-2014)-4f(2)>0的解集為(  )
A.(2012,+∞)B.(0,2012)C.(0,2016)D.(2016,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左.右焦點分別為F1,F(xiàn)2,上頂點與兩焦點構成的三角形為正三角形.
(1)求橢圓C的離心率;
(2)過點F2的直線與橢圓C交于A.B兩點,若△F1AB的內切圓的面積的最大值為$\frac{9π}{16}$.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=ln(x2-1)的定義域為( 。
A.(0,+∞)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.對于函數(shù)f1(x)、f2(x)、h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x)、f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x)、f2(x)的生成函數(shù)?并說明理由;
第一組:f1(x)=sinx,f2(x)=cosx,$h(x)=sin(x+\frac{π}{3})$
第二組:${f_1}(x)={x^2}-x$,${f_2}(x)={x^2}+x+1$,h(x)=x2-x+1;
(2)設f1(x)=log2x,${f_2}(x)={log_{\frac{1}{2}}}x$,a=2,b=1,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍;
(3)設f1(x)=x(x>0),${f_2}(x)=\frac{1}{x}(x>0)$,取a>0,b>0,生成函數(shù)h(x)圖象的最低點坐標為(2,8).若對于任意正實數(shù)x1,x2,且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設{an}為公差小于零的等差數(shù)列,Sn為其前n項和,若S8=S12,則當n為何值時Sn最大( 。
A.8B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,以原點為圓心,橢圓的短半軸長為半徑的圓與直線$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.
(1)求橢圓C的方程,
(2)設A(-4,0),過點R(3,0)作與x軸不重合的直線L交橢圓C于P,Q兩點,連接AP,AQ分別交直線x=$\frac{16}{3}$于M,N兩點,若直線MR、NR的斜率分別為k1,k2,試問:k1 k2是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知三棱錐A-BCD中,AB⊥面BCD,BC⊥CD,AB=BC=CD=2,則三棱錐A-BCD的外接球體積為4$\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點是拋物線y2=4x的焦點,以原點O為圓心,橢圓的長半軸長為半徑的圓與直線x+y-2$\sqrt{2}$=0相切.
(1)求橢圓C的標準方程;
(2)若直線l:y=kx+m與橢圓C相交于P,Q兩點,且△POQ的面積為定值$\sqrt{3}$,試判斷直線OP與OQ的斜率之積是否為定值?若為定值,求出定值;若不為定值,請說明理由.

查看答案和解析>>

同步練習冊答案