分析 記△ABC的面積為S,由已知可得S1=$\frac{5}{9}$S,S2=$\frac{1}{9}$S,S3=$\frac{1}{3}$S,從而求得S1:S2:S3 的值.
解答 解:記△ABC的面積為S,
∵$\overrightarrow{PA}$+3$\overrightarrow{PB}$+5$\overrightarrow{PC}$=$\overrightarrow{0}$,
∴-$\frac{1}{8}$$\overrightarrow{PA}$=$\frac{3}{8}$$\overrightarrow{PB}$+$\frac{5}{8}$$\overrightarrow{PC}$=$\overrightarrow{PD}$,
則D在BC上,且BD:CD=5:3,
故PD:AD=1:9,
即以BC為底時,△BCP的高是△ABC的$\frac{1}{9}$,
∴S2=$\frac{1}{9}$S,
同理:S1=$\frac{5}{9}$S,S3=$\frac{1}{3}$S,
∴S1:S2:S3=5:1:3,
故答案為:5:1:3
點評 本題考查共線向量的意義,兩個同底的三角形的面積之比等于底上的高之比,體現(xiàn)了數(shù)形結合的數(shù)學思想.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 鈍角三角形 | B. | 銳角三角形 | C. | 直角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com