在數(shù)陣
a11a12a13
a21a22a23
a31a32a33
里,每行、每列的數(shù)依次均成等差數(shù)列,其中a22=2,則所有數(shù)的和為( 。
A、18B、17C、19D、21
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由每列的3個數(shù)依次成等差數(shù)列及a22=2,可得a12+a22+a32=3a22=6,根據(jù)各行成等差數(shù)列及等差數(shù)列的性質(zhì)可求得答案.
解答: 解:∵數(shù)陣
a11a12a13
a21a22a23
a31a32a33
里,每行、每列的數(shù)依次均成等差數(shù)列,其中a22=2,
∴a12+a22+a32=3a22=6,
又每行的3個數(shù)依次成等差數(shù)列,
∴a11+a12+a13=3a12,a21+a22+a23=3a22,a31+a32+a33=3a32
∴a11+a12+a13+a21+a22+a23+a31+a32+a33=3a12+3a22+3a32=3×3a22=18,
故選:A.
點評:本題借助矩陣的形式,實際考查數(shù)列的求和、等差數(shù)列的運算性質(zhì),考查學(xué)生靈活運用知識解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(6,1),
BC
=(x,8),
CD
=(-2,-3)
(1)若
BC
CD
,求x的值
(2)若x=-5,求證:
AB
AD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a+
4bx+sinx+bxcosx
4+cosx
(a,b∈R),若f(x)在R上既有最大值又有最小值,且最大值與最小值的和為4,則3b-2a=( 。
A、6B、-4C、5D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2x+2a與g(x)=|x-1|+|x+a|有相同的最小值,則
a
1
f(x)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an=
1
(3n-2n)
,求證:前n項和Sn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
=(1,0,2),
OB
=(0,1,3),則
AB
=( 。
A、(1,1,5)
B、(1,-1,-1)
C、(-1,1,1)
D、(1,-1,1,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨著我國國民經(jīng)濟(jì)的迅速發(fā)展,人們的經(jīng)濟(jì)收入明顯提高,生活狀況越來越好,汽車等商品逐漸成為大眾化消費.某種汽車,購車費是10萬元,每年使用的保險費、養(yǎng)路費、汽油費等約為0.9萬元,年維修費第一年0.2萬元,以后每年比上一年遞增0.2萬元.試問這種汽車使用多少年時,年平均費用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把6名學(xué)生分到一個工廠的三個車間實習(xí),每個車間2人,若甲必須分到一車間,乙和并不能分到三車間,則不同的分法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求多項式f(x)=x5+x4+x3+x2+x+1當(dāng)x=5時的值.

查看答案和解析>>

同步練習(xí)冊答案