8.函數(shù)f(x)=$\frac{1}{2}$sin($\frac{1}{2}$ωx+$\frac{π}{6}$)(ω>0,)x∈R的部分圖象如圖所示,設M,N是圖象上的最高點,P是圖象上的最低點,若△PMN為等腰直角三角形,則ω=2π.

分析 取MN的中點為Q,連PQ,則MQP為等腰直角三角形,根據(jù)MQ=QP=1=$\frac{MN}{2}$=$\frac{1}{2}•\frac{2π}{\frac{ω}{2}}$,求得ω 的值.

解答 解:∵函數(shù)f(x)=$\frac{1}{2}$sin($\frac{1}{2}$ωx+$\frac{π}{6}$)(ω>0,)x∈R的部分圖象如圖所示,
設M,N是圖象上的最高點,P是圖象上的最低點,
若△PMN為等腰直角三角形,取MN的中點為Q,連PQ,則MQP為等腰直角三角形.
∴MQ=QP=1=$\frac{MN}{2}$=$\frac{1}{2}•\frac{2π}{\frac{ω}{2}}$,∴ω=2π,
故答案為:2π.

點評 本題主要考查等腰直角三角形的性質(zhì),正弦函數(shù)的圖象,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知隨機變量X服從正態(tài)分布N(1,σ2),且P(X≤0)=0.1,則P(1≤X≤2)=0.4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若雙曲線C的漸近線方程為y=±2x,且經(jīng)過點$(2,2\sqrt{2})$,則雙曲線C的準線方程為$x=±\frac{{\sqrt{10}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在五面體ABCDEF中,AB∥CD∥EF,CD=EF=CF=2AB=2AD=2,∠DCF=60°,AD⊥CD,平面CDEF⊥平面ABCD.
(1)證明:直線CE⊥平面ADF;
(2)已知P為棱BC上的點,試確定P點位置,使二面角P-DF-A的大小為60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在梯形ABCD中,∠ABC=$\frac{π}{2}$,AD∥BC,BC=2AD=2AB=2,.將梯形ABCD繞BC所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為( 。
A.πB.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知f(x)=ln(x+1),$g(x)=\frac{1}{2}a{x^2}+bx$$(注:ln{(x+1)^'}=\frac{1}{x+1})$
(1)若a=0,b=1時,求證:f(x)-g(x)≤0對于x∈(-1,+∞)恒成立;
(2)若b=2,且h(x)=f(x-1)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知實數(shù)對(x,y)滿足$\left\{\begin{array}{l}{x≤2}\\{y≥1}\\{x-y≥0}\end{array}\right.$,則2x+y取最小值時的最優(yōu)解是( 。
A.6B.3C.( 2,2 )D.( 1,1 )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)設P是橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上任意一點,P是焦點.證明:以PF為直徑的圓與以橢圓長軸為直徑的圓相切;
(2)設P是雙曲線M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$上任意一點,F(xiàn)是焦點,請你類比(1),寫出一個類似的結(jié)論,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知x,y∈R,滿足x2+2xy+4y2=6,則z=x2+4y2的最小值為4.

查看答案和解析>>

同步練習冊答案