分析 取MN的中點為Q,連PQ,則MQP為等腰直角三角形,根據(jù)MQ=QP=1=$\frac{MN}{2}$=$\frac{1}{2}•\frac{2π}{\frac{ω}{2}}$,求得ω 的值.
解答 解:∵函數(shù)f(x)=$\frac{1}{2}$sin($\frac{1}{2}$ωx+$\frac{π}{6}$)(ω>0,)x∈R的部分圖象如圖所示,
設M,N是圖象上的最高點,P是圖象上的最低點,
若△PMN為等腰直角三角形,取MN的中點為Q,連PQ,則MQP為等腰直角三角形.
∴MQ=QP=1=$\frac{MN}{2}$=$\frac{1}{2}•\frac{2π}{\frac{ω}{2}}$,∴ω=2π,
故答案為:2π.
點評 本題主要考查等腰直角三角形的性質(zhì),正弦函數(shù)的圖象,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | $\frac{4π}{3}$ | C. | $\frac{5π}{3}$ | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 3 | C. | ( 2,2 ) | D. | ( 1,1 ) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com