【題目】已知圓,點(diǎn)是直線上一動點(diǎn),過點(diǎn)作圓的切線
(1)當(dāng)的橫坐標(biāo)為2時,求切線方程;
(2)求證:經(jīng)過三點(diǎn)的圓必過定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)當(dāng)線段長度最小時,求四邊形的面積.
【答案】(1)或;(2)
【解析】
(1)點(diǎn),可設(shè)切線方程為:,利用圓心到直線的距離為半徑可得,注意斜率不存在的直線也是圓的切線.
(2)設(shè),過三點(diǎn)的圓的直徑為,利用圓的直徑式方程可得圓的一般方程,整理后可得圓過定點(diǎn)并能求得定點(diǎn)坐標(biāo).
(3)利用(2)的結(jié)論計(jì)算弦的方程,再計(jì)算到的距離后得到弦長與的關(guān)系式,由此可得弦長的最小值 .
(1)當(dāng)斜率不存在時,符合;
當(dāng)斜率存在時,設(shè)切線方程為:,故,解得,
故切線方程為:,
綜上,過的切線方程為或.
(2)設(shè),因?yàn)?/span>,,
所以圓必過點(diǎn)且以為直徑,其方程為:
即,
整理得到:
由, 解得或,所以圓過定點(diǎn).
(3)因圓方程為,
圓:即.
②-①得圓方程與圓相交弦所在直線方程為
,點(diǎn)到直線的距離,
相交弦長即.
當(dāng)時,有最小值,此時,四邊形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(1+x)﹣ (a>0)
(1)若x=1是函數(shù)f(x)的一個極值點(diǎn),求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
(3)證明: (e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2﹣2x+2﹣a2)(a>0),g(x)=x2+6x+c(c∈R).
(1)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=﹣4x﹣2,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=1時,對x1∈[﹣2,2],x2∈[﹣2,2],使f(x1)<g(x2)成立,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=2,且an=2an﹣1﹣1(n∈N* , N≥2)
(1)求證:數(shù)列{an﹣1}為等比數(shù)列;并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan﹣n}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足x2-2(a+1)x+2a+a2<0,q:實(shí)數(shù)x滿足
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3ax2﹣9a2x+a3 . 若a> ,且當(dāng)x∈[1,4a]時,|f′(x)|≤12a恒成立,則a的取值范圍為( )
A.( , ]
B.( ,1]
C.[﹣ ,1]
D.[0, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三數(shù)學(xué)競賽初賽考試后,對考生的成績進(jìn)行統(tǒng)計(jì)(考生成績均不低于90分,滿分150分),將成績按如下方式分成六組,第一組[90,100)、第二組[100,110)…第六組[140,150].圖(1)為其頻率分布直方圖的一部分,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人. (Ⅰ)請補(bǔ)充完整頻率分布直方圖,并估計(jì)這組數(shù)據(jù)的平均數(shù)M;
(Ⅱ)若不低于120分的同學(xué)進(jìn)入決賽,不低于140分的同學(xué)為種子選手,完成下面2×2
列聯(lián)表(即填寫空格處的數(shù)據(jù)),并判斷是否有99%的把握認(rèn)為“進(jìn)入決賽的同學(xué)
成為種子選手與專家培訓(xùn)有關(guān)”.
| [140,150] | 合計(jì) | |
參加培訓(xùn) | 5 | 8 | |
未參加培訓(xùn) | |||
合計(jì) | 4 |
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“牟合方蓋”是我國古代數(shù)學(xué)家劉徽在研究球的體積的過程中構(gòu)造的一個和諧優(yōu)美的幾何體.它由完全相同的四個曲面構(gòu)成,相對的兩個曲面在同一個圓柱的側(cè)面上,好似兩個扣合(牟合)在一起的方形傘(方蓋).其直觀圖如圖,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其主視圖和側(cè)視圖完全相同時,它的俯視圖可能是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com