△ABC中,a,b,c分別是角A,B,C的對(duì)邊,向量
p
=(1,-
3
),
q
=(cosB,sinB),且
p
q
且bcosC+ccosB=2asinA,則∠C=( 。
分析:由兩向量的坐標(biāo)及兩向量平行滿足的條件列出關(guān)系式,利用同角三角形函數(shù)間的基本關(guān)系求出tanB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出B的度數(shù),再利用正弦定理化簡(jiǎn)已知的等式,利用兩角和與差的正弦函數(shù)公式化簡(jiǎn)后根據(jù)sinA的值不為0,求出sinA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出A的度數(shù),即可求出∠C的度數(shù).
解答:解:∵向量
p
=(1,-
3
),
q
=(cosB,sinB),且
p
q
,
∴sinB=-
3
cosB,即tanB=-
3
,
∵∠B為三角形的內(nèi)角,∴∠B=120°,
把bcosC+ccosB=2asinA利用正弦定理化簡(jiǎn)得:sinBcosC+sinCcosB=2sin2A,即sin(B+C)=sinA=2sin2A,
∵sin∠A≠0,∴sinA=
1
2

又∠A為三角形的內(nèi)角,∴∠A=30°,
則∠C=30°.
故選A
點(diǎn)評(píng):此題考查了正弦定理,平面向量的數(shù)量積運(yùn)算,兩角和與差的正弦函數(shù)公式,誘導(dǎo)公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c分別是A、B、C的對(duì)邊.向量
m
=(2,0),
n
=(sinB,1-cosB)
(Ⅰ)若B=
π
3
.求
m
n

(Ⅱ)若
m
n
所成角為
π
3
.求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c三邊成等差數(shù)列,求證:B≤60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A:B:C=4:2:1,證明
1
a
+
1
b
=
1
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a,b,c分別為角A,B,C的對(duì)邊.若a(a+b)=c2-b2,則角C為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•靜安區(qū)一模)在ρABC中,a、b、c 分別為∠A、∠B、∠C的對(duì)邊,∠A=60°,b=1,c=4,則
a+b+c
sinA+sinB+sinC
=
2
39
3
2
39
3

查看答案和解析>>

同步練習(xí)冊(cè)答案