7.若a、b、m∈Z(m>0),且a、b除以m所得的余數(shù)相同,則a、b是m的同余數(shù).已知x=2C${\;}_{2017}^{1}$+22C${\;}_{2017}^{2}$+…+22017C${\;}_{2017}^{2017}$,且x、y是10的同余數(shù),則y的值可以是( 。
A.2012B.2019C.2016D.2013

分析 利用二項式定理及其同余數(shù)的定義即可得出.

解答 解:x=2C${\;}_{2017}^{1}$+22C${\;}_{2017}^{2}$+…+22017C${\;}_{2017}^{2017}$=(1+2)2017-1=3×91008-1=3×(10-1)1008-1
=$3×[1{0}^{1008}-{∁}_{1008}^{1}×1{0}^{1007}$+…-${∁}_{1008}^{1007}$10+1]-1=30×$(1{0}^{1007}-{∁}_{1008}^{1}1{0}^{1006}$+…-1008)+2,
∵x、y是10的同余數(shù),則y的值可以是2010+2,
故選:A.

點評 本題考查了二項式定理及其同余數(shù)的定義,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,在正三棱柱A1B1C1-ABC中,AB=4,${A_1}A=4\sqrt{3}$,D,F(xiàn)分別是棱AB,AA1的中點,E為棱AC上的動點,則△DEF周長的最小值為$2\sqrt{7}+4$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若xy≠0,則$\sqrt{4{x^2}{y^3}}=-2xy\sqrt{y}$成立的條件是x<0且y>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.畫出下列函數(shù)的圖象:
(1)F(x)=$\left\{{\begin{array}{l}{-2,({x≤0})}\\{1,({x>0})}\end{array}}$
(2)G(n)=3n+1,n∈{1,2,3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖的程序框圖,如果輸入的N是9,那么輸出的S是(  )
A.2B.$\frac{1}{2}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在平面直角坐標系中,動圓經(jīng)過點M(a-2,0),N(a+2,0),P(0,-2),其中a∈R.
(1)求動圓圓心的軌跡E的方程;
(2)過點P作直線l交軌跡E于不同的兩點A、B,直線OA與直線OB分別交直線y=2于兩點C、D,記△ACD與△BCD的面積分別為S1,S2.求S1+S2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知定點F,定直線l和動點M,設(shè)M到l的距離為d,則“|MF|=d”是“M的軌跡是以F為焦點,l為準線的拋物線”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)-1(ω>0)的圖象向右平移$\frac{π}{3}$個單位后與原圖象重合,則ω的最小值是( 。
A.6B.3C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{|x-4|},x≠4}\\{2,x=4}\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個不同的實數(shù)解x1,x2,x3,x4,x5,h(x)=lg|x-4|,則h(x1+x2+x3+x4+x5)等于( 。
A.3B.lg12C.lg20D.4lg2

查看答案和解析>>

同步練習冊答案