15.畫出下列函數(shù)的圖象:
(1)F(x)=$\left\{{\begin{array}{l}{-2,({x≤0})}\\{1,({x>0})}\end{array}}$
(2)G(n)=3n+1,n∈{1,2,3}.

分析 直接根據(jù)函數(shù)的解析式,作出函數(shù)的圖象.

解答 解:(1)F(x)=$\left\{{\begin{array}{l}{-2,({x≤0})}\\{1,({x>0})}\end{array}}$的圖象如圖(1)所示:
(2)G(n)=3n+1,n∈{1,2,3}的圖象如圖(2)所示.

點評 本題主要考查函數(shù)的圖象特征,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在等比數(shù)列{an}中,若公比q=2,S3=7,則S6的值為(  )
A.56B.58C.63D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,角A、B、C的對邊分別是a、b、c,若$\frac{cosA}{cosB}=\frac{a}$,且4sinA=3sinB則△ABC的形狀是( 。
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知y=f(x)是定義在R上的奇函數(shù),當時x≥0,f(x)=x2+2x.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x)≥x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對數(shù)式log(a-2)(5-a)中實數(shù)a的取值范圍是( 。
A.(-∞,5)B.(2,5)C.(2,3)∪(3,5)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知奇函數(shù)f(x)在R上為增函數(shù),且f(1)=$\frac{1}{2}$,若實數(shù)a滿足f(loga3)-f(loga$\frac{1}{3}$)≤1,則實數(shù)a的取值范圍為( 。
A.0<a≤$\frac{1}{3}$B.a≤$\frac{1}{3}$C.$\frac{1}{3}$≤a<1D.a≥3或0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a、b、m∈Z(m>0),且a、b除以m所得的余數(shù)相同,則a、b是m的同余數(shù).已知x=2C${\;}_{2017}^{1}$+22C${\;}_{2017}^{2}$+…+22017C${\;}_{2017}^{2017}$,且x、y是10的同余數(shù),則y的值可以是( 。
A.2012B.2019C.2016D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F1、F2是橢圓C:$\frac{x^2}{16}+\frac{y^2}{9}$=1(a>b>0)的兩個焦點,P為橢圓C上的一點,且$\overline{P{F}_{1}}$⊥$\overline{P{F}_{2}}$.求△PF1F2的面積( 。
A.9B.6C.9$\sqrt{3}$D.6$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)隨機變量ξ的分布列為
ξ123
P0.5xy
若$E(ξ)=\frac{15}{8}$,則D(ξ)的值為( 。
A.$\frac{55}{64}$B.$\frac{33}{64}$C.$\frac{7}{32}$D.$\frac{9}{32}$

查看答案和解析>>

同步練習(xí)冊答案