某射手在一次射擊中,射中10環(huán)、9環(huán)、8環(huán)的概率分別是0.20,0.30,0.20,則此射手在一次射擊中不足8環(huán)的概率為(  )
A、0.40B、0.30
C、0.60D、0.90
考點(diǎn):互斥事件的概率加法公式
專題:概率與統(tǒng)計(jì)
分析:此射手在一次射擊中不足8環(huán)的對(duì)立事件是:一次射擊中大于等于8環(huán).由此能求出此射手在一次射擊中不足8環(huán)的概率.
解答: 解:此射手在一次射擊中不足8環(huán)的對(duì)立事件是:一次射擊中大于等于8環(huán).
此射手在一次射擊中大于等于8環(huán)的概率P=0.20+0.30+0.20=0.7,
所以此射手在一次射擊中不足8環(huán)的概率為1-0.7=0.3.
故選:B.
點(diǎn)評(píng):本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)立事件的概率公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線
x=1+t
y=4-2t
(t∈R)與圓
x=2cos+2
y=2sinθ
(0∈[0,2π])相交于AB,則以AB為直徑的圓的面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2an+2,求滿足方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
x
-2(x≠2),則f(x)( 。
A、在(-2,+∞)上是增函數(shù)
B、在(-2,+∞)上是減函數(shù)
C、在(2,+∞)上是增函數(shù)
D、在(2,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是BB1,D1B1的中點(diǎn),棱長(zhǎng)為1,求點(diǎn)E、F的坐標(biāo)和B1關(guān)于原點(diǎn)D對(duì)稱的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

擲一個(gè)骰子的試驗(yàn)中,事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“小于5的點(diǎn)數(shù)出現(xiàn)”,則一次試驗(yàn)中,事件A+
.
B
發(fā)生的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A表示集合{2,3,a2+2a-3},B表示集合{|a+3|,2},若已知5∈A,且5∈B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出定理,圓內(nèi)接四邊形的對(duì)角互補(bǔ)直線l1:x+3y-7=0、l2:kx-y-2=0與x軸、y軸的正半軸所圍成的四邊形有外接圓,則k為何值時(shí)l1:x+3y-7=0和l2:kx-y-2=0與x軸、y軸所圍成的四邊形有外接圓?并求此外接圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{bn}是一個(gè)正項(xiàng)等比數(shù)列,b4=24,b6=96
(1)求{bn}的通項(xiàng)公式與前n項(xiàng)和公式.
(2)設(shè)Cn=
bn
2n
,求證{Cn}是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案