15.把$\lim_{n→+∞}\frac{1}{n}$($\frac{1}{n}$+$\frac{2}{n}$+$\frac{3}{n}$+…+$\frac{n-1}{n}$+1)寫成定積分式為${∫}_{0}^{1}$xdx.

分析 利用定積分的定義即可選出.

解答 解:$\lim_{n→+∞}\frac{1}{n}$($\frac{1}{n}$+$\frac{2}{n}$+$\frac{3}{n}$+…+$\frac{n-1}{n}$+1)寫成定積分式為${∫}_{0}^{1}$xdx,
故答案為:${∫}_{0}^{1}$xdx

點評 本題考查定積分的定義,考查定積分的計算,考查數(shù)列的極限,屬于中檔題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)f(x)=$\frac{1}{3}$x3-ax2+1在x=-4處取得極大值,則實數(shù)a的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若數(shù)列{an}與{bn} 滿足an=$\frac{3+(-1)^{n+1}}{2}$,an+1bn+anbn+1=(-1)n+1,n∈N*,且b1=2,設數(shù)列{bn}的前n項和為Sn,則S99=( 。
A.1225B.1325C.1425D.1525

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知等差數(shù)列{an}的前n項和為Sn,且S2=11,S5=50,則過點P(n,an)和Q(n+2,an+2)(n∈N*)的直線的一個方向向量的坐標可以是( 。
A.(-1,-3)B.(1,-3)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.現(xiàn)有9本不同的書,分別求下列情況的不同分法的種數(shù).
(1)分成三組,一組4本,一組3本,一組2本;
(2)分給三人,一人4本,一人3本,一人2本;
(3)平均分成三組.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知復數(shù)z=(m2+m)+(m+1)i
(I)實數(shù)m為何值時,復數(shù)z為純虛數(shù);
(Ⅱ)若m=-2,求$\frac{z}{1+i}$的共軛復數(shù)的模.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若a為正實數(shù),i為虛數(shù)單位,且|$\frac{a+i}{i}}$|=2,則a=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,則cos2α=-$\frac{33}{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知曲線$\frac{{x}^{2}}{4}$-y2=1 通過$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=2y}\end{array}\right.$伸縮變換后得到的曲線方程為x2-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步練習冊答案