19.若向面積為2的△ABC內(nèi)任取一點P,并連接PB,PC,則△PBC的面積小于1的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 首先分析題目求在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積小于1的概率,即可考慮畫圖求解的方法,然后根據(jù)圖形分析出基本的事件空間與事件的幾何度量是什么.再根據(jù)幾何關(guān)系求解出它們的比例即可.

解答 解:記事件A={△PBC的面積小于 1},
基本事件空間是三角形ABC的面積,(如圖)
事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),
因為陰影部分的面積是整個三角形面積的$\frac{3}{4}$,
所以P(A)=$\frac{3}{4}$.
故選:D.

點評 本題考查了幾何概型,解答此題的關(guān)鍵在于明確測度比是面積比.對于幾何概型常見的測度是長度之比,面積之比,體積之比,角度之比,要根據(jù)題意合理的判斷和選擇是哪一種測度進行求解.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.給出命題:p:$\sqrt{2}$>1,q:y=tanx是偶函數(shù),則有三個命題:“p且q”、“p或q”、“非p”中真命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某小區(qū)現(xiàn)有一塊草坪ABCD呈平行四邊形形狀,AB=3,AD=2,∠BAD=60°,為了改善居民的生活環(huán)境,決定將原草坪擴建成三角形PAQ形狀,點A,D,P共線,Q,C,P共線,A,B,Q共線,設AP=x,BQ=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)求△APQ面積最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,E為AC與BD的交點,PA⊥平面ABCD,M為PA中點,N為BC中點.
(1)證明:直線MN∥平面PCD;
(2)若點Q為PC中點,∠BAD=120°,PA=$\sqrt{3}$,AB=1,求三棱錐A-QCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知正實數(shù)a,b 滿足a+4b=8,那么ab的最大值是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②若數(shù)列{an}是等方差數(shù)列,則數(shù)列{an2}是等方差數(shù)列;
③{(-1)n}是等方差數(shù)列;
④若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
其中正確命題的個數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點分別為F1,F(xiàn)2,四個頂點圍成的四邊形面積為4$\sqrt{2}$.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設O為坐標原點,過點P(0,1)的動直線與橢圓交于A,B兩點.是否存在常數(shù)λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設函數(shù)f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者,若f(a+2)>f(a),則實數(shù)a的取值范圍為(-∞,-2)∪(-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(log2x)=x2+2x.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=a•2x-4在區(qū)間(0,2)內(nèi)有兩個不相等的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案