A. | [-1,$\frac{1}{3}$] | B. | [-1,1] | C. | [-$\frac{1}{3}$,+∞) | D. | [-$\frac{4}{3}$,+∞) |
分析 由求導(dǎo)公式和法則求出f′(x),由題意可得f′(x)≥0在區(qū)間[0,$\frac{π}{2}$]上恒成立,設(shè)t=cosx(0≤t≤1),化簡(jiǎn)得5-4t2+3at≥0,對(duì)t分t=0、0<t≤1討論,分離出參數(shù)a,運(yùn)用函數(shù)的單調(diào)性求出最值,由恒成立求出實(shí)數(shù)a的取值范圍.
解答 解:由題意得,f′(x)=1-$\frac{2}{3}$cos2x+acosx,
∵函數(shù)f(x)=x-$\frac{1}{3}$sin2x+asinx在區(qū)間[0,$\frac{π}{2}$]上遞增,
∴函數(shù)f′(x)≥0在區(qū)間[0,$\frac{π}{2}$]上恒成立,
則1-$\frac{2}{3}$cos2x+acosx≥0,即$\frac{5}{3}$-$\frac{4}{3}$cos2x+acosx≥0,
設(shè)t=cosx(0≤t≤1),即有5-4t2+3at≥0,
當(dāng)t=0時(shí),不等式顯然成立;
當(dāng)0<t≤1時(shí),3a≥4t-$\frac{5}{t}$,
∵y=4t-$\frac{5}{t}$在(0,1]遞增,∴t=1時(shí),取得最大值-1,
即3a≥-1,解得a≥$-\frac{1}{3}$,
綜上可得a的范圍是[$-\frac{1}{3},+∞$).
故選:C.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,不等式恒成立問(wèn)題的轉(zhuǎn)化,注意運(yùn)用參數(shù)分離和換元法,考查函數(shù)的單調(diào)性的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4-π | B. | π-2 | C. | 1-$\frac{π}{2}$ | D. | 1-$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$ | B. | $\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}$ | C. | $\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}$ | D. | $\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{AB}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com