18.在△ABC中,若點(diǎn)D滿足$\overrightarrow{BD}=2\overrightarrow{DC}$,則$\overrightarrow{AD}$=( 。
A.$\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$B.$\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}$C.$\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}$D.$\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{AB}$

分析 根據(jù)平面向量的線性表示與運(yùn)算性質(zhì),進(jìn)行計(jì)算即可.

解答 解:如圖所示,

△ABC中,$\overrightarrow{BD}=2\overrightarrow{DC}$,
∴$\overrightarrow{BD}$=$\frac{2}{3}$$\overrightarrow{BC}$
=$\frac{2}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$),
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$
=$\overrightarrow{AB}$+$\frac{2}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$.
故選:D.

點(diǎn)評(píng) 本題考查了平面向量的線性表示與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如果函數(shù)f(x)=x-$\frac{1}{3}$sin2x+asinx在區(qū)間[0,$\frac{π}{2}$]上遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,$\frac{1}{3}$]B.[-1,1]C.[-$\frac{1}{3}$,+∞)D.[-$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.
(Ⅰ)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若0<x<π,則函數(shù)y=lg(sinx-$\frac{1}{2}$)+$\sqrt{\frac{1}{2}-cosx}$的定義域是(  )
A.[$\frac{π}{3}$,$\frac{2}{3}π$)B.($\frac{π}{6}$,$\frac{5}{6}π$)C.[$\frac{π}{3}$,$\frac{5}{6}π$)D.($\frac{5}{6}π$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{2}$,|$\overrightarrow{a}$-$\overrightarrow$|=2,則$\overrightarrow{a}$•$\overrightarrow$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉
的時(shí)間(分鐘)
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
總?cè)藬?shù)203644504010
將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(Ⅰ)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo)課外體育達(dá)標(biāo)合計(jì)
20110
合計(jì)
(Ⅱ)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.等腰梯形ABCD中,AD∥BC,AC、BD交于點(diǎn)Q,AC平分∠DAB,AP為梯形ABCD外接圓的切線,交BD的延長(zhǎng)線于點(diǎn)P.
(Ⅰ)求證:PQ2=PD•PB
(Ⅱ)若AB=3,AP=2,AD=$\frac{4}{3}$,求AQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F(xiàn)分別為AC,BC的中點(diǎn),沿EF將△CEF折起,得到如圖2所示的四棱錐C′-ABFE
(Ⅰ)求證:AB⊥平面AEC′;
(Ⅱ)當(dāng)四棱錐C′-ABFE體積取最大值時(shí),
(i)若G為BC′中點(diǎn),求異面直線GF與AC′所成角;
(ii)在C′-ABFE中AE交BF于C,求二面角A-CC′-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知數(shù)列{an}是等比數(shù)列,則“a1<a2”是“數(shù)列{an}為遞增數(shù)列”的( 。
A.充分不必要條件B.充分必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案