A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
分析 ①由blna-alnb=a-b得$\frac{1+lna}{a}$=$\frac{1+lnb}$,構造函數f(x)=$\frac{1+lnx}{x}$,x>0,判斷a,b的取值范圍即可.
②由對數平均不等式進行證明,
③構造函數,判斷函數的單調性,進行證明即可.
解答 解:①由blna-alnb=a-b,得blna+b=alnb+a,即$\frac{1+lna}{a}$=$\frac{1+lnb}$,
設f(x)=$\frac{1+lnx}{x}$,x>0,
則f′(x)=-$\frac{lnx}{{x}^{2}}$=,
由f′(x)>0得-lnx>0,得lnx<0,得0<x<1,
由f′(x)<0得-lnx<0,得lnx>0,得x>1,
即當x=1時,函數f(x)取得極大值,
則$\frac{1+lna}{a}$=$\frac{1+lnb}$,等價為f(a)=f(b),
則a,b一個大于1,一個小于1,
不妨設0<a<1,b>1.
則a+b-ab>1等價為(a-1)(1-b)>0,
∵0<a<1,b>1.∴(a-1)(1-b)>0,則a+b-ab>1成立,故①正確,
②由即$\frac{1+lna}{a}$=$\frac{1+lnb}$,
得$\frac{lna+lnb+2}{a+b}$=$\frac{lna-lnb}{a-b}$,
由對數平均不等式得$\frac{lna+lnb+2}{a+b}$=$\frac{lna-lnb}{a-b}$>$\frac{2}{a+b}$,
即lna+lnb>0,即lnab>0,
則ab>1,
由均值不等式得a+b>2,故②正確,
③令g(x)=-xlnx+x,則g′(x)=-lnx,
則由g′(x)>0得-lnx>0,得lnx<0,得0<x<1,此時g(x)為增函數,
由g′(x)<0得-lnx<0,得lnx>0,得x>1,此時g(x)為減函數,
再令h(x)=g(x)-g(2-x),0<x<1,
則h′(x)=g′(x)+g′(2-x)=-lnx-lm(2-x)=-ln[x(2-x)]>0,
則h(x)=g(x)-g(2-x),在0<x<1上為增函數,
則h(x)=g(x)-g(2-x)<h(1)=0,
則g(x)<g(2-x),
即g($\frac{1}{a}$)<g(2-$\frac{1}{a}$),
∵g($\frac{1}{a}$)=$\frac{1}{a}$-$\frac{1}{a}$ln$\frac{1}{a}$=$\frac{1}{a}$+$\frac{1}{a}$lna=$\frac{1+lna}{a}$=$\frac{1+lnb}$,
∴g($\frac{1}{a}$)=g($\frac{1}$)
則g($\frac{1}$)=g($\frac{1}{a}$)<g(2-$\frac{1}{a}$),
∵g(x)在0<x<1上為增函數,
∴$\frac{1}$>2-$\frac{1}{a}$,
即$\frac{1}{a}$+$\frac{1}$>2.
故③正確,
故選:D
點評 本題主要考查命題的真假判斷,涉及不等式的證明,利用構造法,結合函數的單調性和導數的關系是解決本題的關鍵.綜合性較強,難度較大.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 無數 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{17}+4}{4}$ | B. | $\frac{\sqrt{17}+3}{4}$ | C. | $\frac{\sqrt{17}+2}{4}$ | D. | $\frac{\sqrt{17}+1}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com