精英家教網 > 高中數學 > 題目詳情
15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以該橢圓上的點和橢圓的兩個焦點為頂點的三角形的周長為6.
(1)求橢圓C的方程;
(2)設過點C的左焦點F的直線l交C于A,B兩點,是否存在常數λ,使|$\overrightarrow{AB}$|=λ$\overrightarrow{FA}$•$\overrightarrow{FB}$恒成立,若存在,求出λ的值;若不存在,請說明理由.

分析 (1)由$\frac{c}{a}$=$\frac{1}{2}$,2a+2c=6,a2=b2+c2,聯(lián)立解出即可得出橢圓C的方程.
(2)F(-1,0),設A(x1,y1),B(x2,y2).當直線l的斜率不存在時,x1=-1,不妨取y1=$\frac{3}{2}$,可得λ=$\frac{|\overrightarrow{AB}|}{|\overrightarrow{FA}||\overrightarrow{FB}|}$=-$\frac{4}{3}$.當直線l的斜率存在時,設直線l的方程為y=k(x+1),代入橢圓方程整理為:(4k2+3)x2+8k2x+4k2-12=0,△>0,利用根與系數的關系可得$|\overrightarrow{AB}|$=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,$\overrightarrow{FA}$•$\overrightarrow{FB}$=(x1+1)(x2+1)+y1y2,計算$\frac{|\overrightarrow{AB}|}{|\overrightarrow{FA}||\overrightarrow{FB}|}$即可得出.

解答 解:(1)∵$\frac{c}{a}$=$\frac{1}{2}$,2a+2c=6,a2=b2+c2,解得a=2,c=1,b2=3.
∴橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(2)F(-1,0),設A(x1,y1),B(x2,y2).當直線l的斜率不存在時,x1=-1,
不妨取y1=$\frac{3}{2}$,|$\overrightarrow{AB}$|=3,$\overrightarrow{FA}$=$(0,\frac{3}{2})$,$\overrightarrow{FB}$=$(0,-\frac{3}{2})$.$\overrightarrow{FA}$•$\overrightarrow{FB}$=$-\frac{9}{4}$,
則λ=$\frac{|\overrightarrow{AB}|}{|\overrightarrow{FA}||\overrightarrow{FB}|}$=$\frac{3}{-\frac{9}{4}}$=-$\frac{4}{3}$.
當直線l的斜率存在時,設直線l的方程為y=k(x+1),
則$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=k(x+1)}\end{array}\right.$,整理為:(4k2+3)x2+8k2x+4k2-12=0,
△=64k4-4(4k2+3)(4k2-12)=122(1+k2)>0,
x1+x2=$\frac{-8{k}^{2}}{4{k}^{2}+3}$,x1x2=$\frac{4{k}^{2}-12}{4{k}^{2}+3}$.$|\overrightarrow{AB}|$
=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{12({k}^{2}+1)}{4{k}^{2}+3}$,
$\overrightarrow{FA}$=(x1+1,y1),$\overrightarrow{FB}$=(x2+1,y2)..$\overrightarrow{FA}$•$\overrightarrow{FB}$=(x1+1)(x2+1)+y1y2=(k2+1)[x1x2+(x1+x2)+1]=$\frac{-9({k}^{2}+1)}{4{k}^{2}+3}$,
則$\frac{|\overrightarrow{AB}|}{|\overrightarrow{FA}||\overrightarrow{FB}|}$=$\frac{\frac{12({k}^{2}+1)}{4{k}^{2}+3}}{\frac{-9({k}^{2}+1)}{4{k}^{2}+3}}$=-$\frac{4}{3}$.
綜上所述:可得存在常數λ=-$\frac{4}{3}$,使|$\overrightarrow{AB}$|=λ$\overrightarrow{FA}$•$\overrightarrow{FB}$恒成立.

點評 本題考查了橢圓的標準方程及其性質、直線與橢圓相交問題、向量數量積運算性質、弦長公式、一元二次方程的根與系數的關系,考查了分類討論方法、推理能力與計算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

5.設tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=-$\frac{1}{4}$,則tan(α+$\frac{π}{4}$)的值是( 。
A.$\frac{13}{18}$B.$\frac{13}{22}$C.$\frac{3}{22}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知函數f(x)=4ax-$\frac{a}{x}$-2lnx.
(Ⅰ)當a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數f(x)在其定義域內為增函數,求實數a的取值范圍;
(Ⅲ)設函數g(x)=$\frac{6e}{x}$,若在區(qū)間[1,e]上至少存在一點x0,使得f(x0)>g(x0)成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知函數f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,0≤x<4}\\{lo{g}_{2}(x+4),4≤x≤12}\end{array}\right.$,若存在x1,x2∈R,當0≤x1<4≤x2≤12時,f(x1)=f(x2),則x1f(x2)的最大值是$\frac{256}{27}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.如圖,點F1,F2分別是橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,點A是下頂點,拋物線C2:y=x2-1與x軸交于點F1,F2,與y軸交于點B,且點B是線段OA的中點,點N為拋物線上C2的一動點,過點N作拋物線C2的切線交橢圓C1于P,Q兩點.
(1)求橢圓C1的方程;
(2)若點M(0,-$\frac{4}{5}$),求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知x,y,z都是正數且xyz=8,求證:(2+x)(2+y)(2+z)≥64.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.為考查某種疫苗預防疾病的效果,進行動物實驗,得到統(tǒng)計數據如表:
未發(fā)病發(fā)病合計
未注射疫苗20xA
注射疫苗30yB
合計5050100
現從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為$\frac{2}{5}$.
(1)求2×2列聯(lián)表中的數據x,y,A,B的值;
(2)繪制發(fā)病率的條形統(tǒng)計圖,并判 斷疫苗是否有效?
(3)能夠有多大把握認為疫苗有效?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P( K2≤K00.050.010.0050.001
K03.8416.6357.87910.828

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.如圖,在平面直角坐標系xOy中,直線l與橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)相切于點P,過橢圓的左、右焦點F1,F2分別作F1M,F2N重直于直線l于M,N,記μ=$\frac{{N{F_2}}}{{M{F_1}}}$,當P為左頂點時,μ=9,且當μ=1時,四邊形MF1F2N的周長為22.
(1)求橢圓的標準方程;
(2)求證:MF1•NF2為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.把函數f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)的圖象向右平移$\frac{2π}{3}$個單位長度后與原圖象重合,則當ω取最小值時,f(x)的單調遞減區(qū)間是( 。
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$](k∈Z)
C.[$\frac{2kπ}{3}$-$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{5π}{18}$](k∈Z)D.[$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$-$\frac{π}{18}$](k∈Z)

查看答案和解析>>

同步練習冊答案