3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,0≤x<4}\\{lo{g}_{2}(x+4),4≤x≤12}\end{array}\right.$,若存在x1,x2∈R,當0≤x1<4≤x2≤12時,f(x1)=f(x2),則x1f(x2)的最大值是$\frac{256}{27}$.

分析 由題意作函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,0≤x<4}\\{lo{g}_{2}(x+4),4≤x≤12}\end{array}\right.$的圖象,從而可得1≤x1≤3,x1f(x2)=-x13+4${{x}_{1}}^{2}$,記g(x1)=-x13+4${{x}_{1}}^{2}$,則g′(x1)=-3${{x}_{1}}^{2}$+8x1=-3x1(3x1-8),從而判斷函數(shù)的單調(diào)性及最值,從而求得.

解答 解:由題意作函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,0≤x<4}\\{lo{g}_{2}(x+4),4≤x≤12}\end{array}\right.$的圖象如下,

結合圖象可知,
3≤-${{x}_{1}}^{2}$+4x1≤4,
解得,1≤x1≤3,
故x1f(x2)=x1f(x1
=x1(-${{x}_{1}}^{2}$+4x1)=-x13+4${{x}_{1}}^{2}$,
記g(x1)=-x13+4${{x}_{1}}^{2}$,g′(x1)=-3${{x}_{1}}^{2}$+8x1=-3x1(3x1-8),
故g(x1)在[1,$\frac{8}{3}$]上是增函數(shù),在($\frac{8}{3}$,3]上是減函數(shù),
故x1f(x2)的最大值是g($\frac{8}{3}$)=$\frac{256}{27}$,
故答案為:$\frac{256}{27}$.

點評 本題考查了數(shù)形結合與轉(zhuǎn)化思想的方法應用,同時考查了導數(shù)的綜合應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.若α是銳角,且sin(α-$\frac{π}{3}$)=$\frac{\sqrt{3}}{3}$,則cosα=$\frac{2\sqrt{2}-3}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,若曲線C1的方程為ρsin(θ+$\frac{π}{3}$)+2$\sqrt{3}$=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).
(1)將C1的方程化為直角坐標方程;
(2)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知極坐標系中的曲線ρcos2θ=sinθ與曲線ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知拋物線C的標準方程為y2=2px(p>0),M為拋物線C上一動點,A(a,0)(a≠0)為其對稱軸上一點,直線MA與拋物線C的另一個交點為N.當A為拋物線C的焦點且直線MA與其對稱軸垂直時,△MON的面積為18.
(1)求拋物線C的標準方程;
(2)記t=$\frac{1}{{|{AM}|}}+\frac{1}{{|{AN}|}}$,若t值與M點位置無關,則稱此時的點A為“穩(wěn)定點”,試求出所有“穩(wěn)定點”,若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設拋物線C:x2=2py(p>0)的焦點為F,準線為l,A為C上一點,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點.
(1)若p=2且∠BFD=90°時,求圓F的方程;
(2)若A,B,F(xiàn)三點在同一直線m上,設直線m與拋物線C的另一個交點為E,在y軸上求一點G,使得∠OGE=∠OGA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以該橢圓上的點和橢圓的兩個焦點為頂點的三角形的周長為6.
(1)求橢圓C的方程;
(2)設過點C的左焦點F的直線l交C于A,B兩點,是否存在常數(shù)λ,使|$\overrightarrow{AB}$|=λ$\overrightarrow{FA}$•$\overrightarrow{FB}$恒成立,若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,若輸入的x的值為4,則輸出的數(shù)是( 。
A.16B.4C.64D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=($\frac{1}{2}$)x,則f(log2$\frac{1}{3}$)=-$\frac{1}{3}$,函數(shù)f(x)的值域為(-1,1).

查看答案和解析>>

同步練習冊答案