5.把函數(shù)f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)的圖象向右平移$\frac{2π}{3}$個單位長度后與原圖象重合,則當(dāng)ω取最小值時,f(x)的單調(diào)遞減區(qū)間是(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$](k∈Z)
C.[$\frac{2kπ}{3}$-$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{5π}{18}$](k∈Z)D.[$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$-$\frac{π}{18}$](k∈Z)

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可得k•$\frac{2π}{ω}$=$\frac{2π}{3}$,k∈Z,求得ω的值,可得函數(shù)的解析式,再利用余弦函數(shù)的單調(diào)性得出結(jié)論.

解答 解:把函數(shù)f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)的圖象向右平移$\frac{2π}{3}$個單位長度后得到的圖象與原圖象重合,
故k•$\frac{2π}{ω}$=$\frac{2π}{3}$,k∈Z,即ω=3k,故ω的最小正值為3,此時,f(x)=cos(3x+$\frac{π}{6}$).
令2kπ≤3x+$\frac{π}{6}$≤2kπ+π,求得$\frac{2kπ}{3}$-$\frac{π}{18}$≤x≤$\frac{2kπ}{3}$+$\frac{5π}{18}$,故f(x)的單調(diào)遞減區(qū)間為[$\frac{2kπ}{3}$-$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{5π}{18}$],
故選:C.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以該橢圓上的點和橢圓的兩個焦點為頂點的三角形的周長為6.
(1)求橢圓C的方程;
(2)設(shè)過點C的左焦點F的直線l交C于A,B兩點,是否存在常數(shù)λ,使|$\overrightarrow{AB}$|=λ$\overrightarrow{FA}$•$\overrightarrow{FB}$恒成立,若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若實數(shù)x,y,z滿足y+z=3x2-4x+6,y-z=x2-4x+4,試確定x,y,z的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=($\frac{1}{2}$)x,則f(log2$\frac{1}{3}$)=-$\frac{1}{3}$,函數(shù)f(x)的值域為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且點(1,$\frac{\sqrt{3}}{2}$)在該橢圓上.
(1)求橢圓的方程;
(2)不垂直坐標(biāo)軸的直線l與橢圓C交于A,B兩點,以AB為直徑的圓過原點,且線段AB的垂直平分線交y軸于點P(0,-$\frac{3}{2}$),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,若Γ與圓E:(x-$\frac{3}{2}$)2+y2=1相交于M,N兩點,且圓E在Γ內(nèi)的弧長為$\frac{2}{3}$π.
(I)求a,b的值;
(II)過Γ的中心作兩條直線AC,BD交Γ于A,C和B,D四點,設(shè)直線AC的斜率為k1,BD的斜率為k2,且k1k2=$\frac{1}{4}$.
(1)求直線AB的斜率;
(2)求四邊形ABCD面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知動點P到y(tǒng)軸的距離的3倍等于它到點A(1,3)的距離的平方,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.${∫}_{0}^{3}$|x-2|dx=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知拋物線C:x2=4y,直線l1與C相交于A,B兩點,線段AB與它的中垂線l2交于點G(a,1)(a≠0).
(Ⅰ)求證:直線l2過定點,并求出該定點坐標(biāo);
(Ⅱ)設(shè)l2分別交x軸,y軸于點M,N,是否存在實數(shù)a,使得A,M,B,N四點在同一個圓上,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案