【題目】函數(shù)角度看,可以看成是以為自變量的函數(shù),其定義域是.

1)證明:

2)試?yán)?/span>1的結(jié)論來證明:當(dāng)為偶數(shù)時,的展開式最中間一項的二項式系數(shù)最大;當(dāng)為奇數(shù)時的展開式最中間兩項的二項式系數(shù)相等且最大.

【答案】1)證明見解析;(2)證明見解析.

【解析】

1)先根據(jù)組合數(shù)公式求出,計算的值,從而證得結(jié)論;

2)設(shè),由(1)可得,令,可得

(等號不成立),故有當(dāng)時,成立;

當(dāng)時,成立.最大,

當(dāng)為奇數(shù)時,同理可證,從而證得結(jié)論.

(1)因為,又因為,

所以.

成立.

(2)設(shè),因為,,

所以.,所以,

(等號不成立),所以時,成立,

反之,當(dāng)時,成立.

所以最大,即展開式最中間一項的二項式系數(shù)最大;

當(dāng)為奇數(shù)時,設(shè),其最中間有兩項且

由(1)知,顯然

,令,可得,

,當(dāng)時,,且這兩項為二項展開式最中間兩項的系數(shù),

所以時,成立;

由對稱性可知:當(dāng)時,成立,

,故當(dāng)為奇數(shù)時,的展開式最中間兩項的二項式系數(shù)相等且最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列各隨機(jī)試驗的樣本空間:

1)采用抽簽的方式,隨機(jī)選擇一名同學(xué),并記錄其性別;

2)采用抽簽的方式,隨機(jī)選擇一名同學(xué),觀察其ABO血型;

3)隨機(jī)選擇一個有兩個小孩的家庭,觀察兩個孩子的性別;

4)射擊靶3次,觀察各次射擊中靶或脫靶情況;

5)射擊靶3次,觀察中靶的次數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線軸交于點,與曲線交于點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生對電子競技的興趣,從該校高二年級的學(xué)生中隨機(jī)抽取了人進(jìn)行檢查,已知這人中有名男生對電子競技有興趣,而對電子競技沒興趣的學(xué)生人數(shù)與電子競技競技有興趣的女生人數(shù)一樣多,且女生中有的人對電子競技有興趣.

在被抽取的女生中與名高二班的學(xué)生,其中有名女生對電子產(chǎn)品競技有興趣,先從這名學(xué)生中隨機(jī)抽取人,求其中至少有人對電子競技有興趣的概率;

完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“電子競技的興趣與性別有關(guān)”.

有興趣

沒興趣

合計

男生

女生

合計

參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個正三棱柱的三視圖如圖所示,若該三棱柱的外接球的表面積為,則側(cè)視圖中的的值為 ( )

A. 6 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)在區(qū)間上有最大值4,最小值0.

1)求函數(shù)的解析式;

2)設(shè),若時恒成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費(fèi)按行駛里程加用車時間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費(fèi)的時間是一個隨機(jī)變量,根據(jù)一段時間統(tǒng)計40次路上開車花費(fèi)時間在各時間段內(nèi)的情況如下:

時間(分鐘)

次數(shù)

8

14

8

8

2

以各時間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費(fèi)的時間視為用車時間,范圍為分鐘.

(Ⅰ)若李先生上.下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費(fèi)用大約是多少(同一時段,用該區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“楊輝三角”是我國數(shù)學(xué)史上的一個偉大成就,是二項式系數(shù)在三角形中的一種幾何排列.如圖所示,去除所有為1的項,依此構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前46項和為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗證這個結(jié)論,某興趣小組隨機(jī)抽取了100名魔方愛好者進(jìn)行調(diào)查,得到的部分?jǐn)?shù)據(jù)如表所示:已知在全部100人中隨機(jī)抽取1人抽到喜歡盲擰的概率為

喜歡盲擰

不喜歡盲擰

總計

10

20

總計

100

表(1)

并邀請這100人中的喜歡盲擰的人參加盲擰三階魔方比賽,其完成時間的頻率分布如表所示:

完成時間(分鐘)

[0,10)

[10,20)

[20,30)

[30,40]

頻率

0.2

0.4

0.3

0.1

表(2)

(Ⅰ)將表(1)補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?

(Ⅱ)現(xiàn)從表(2)中完成時間在[30,40] 內(nèi)的人中任意抽取2人對他們的盲擰情況進(jìn)行視頻記錄,記完成時間在[30,40]內(nèi)的甲、乙、丙3人中恰有一人被抽到為事件A,求事件A發(fā)生的概率.

(參考公式:,其中

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案