分析 由設(shè)t=f(x)-lnx,則f(x)=lnx+t,又由f(t)=1,求出f(x)=lnx+1,則方程f(x)-f′(x)=1的解可轉(zhuǎn)化成方程lnx-$\frac{1}{x}$=0的解,根據(jù)零點(diǎn)存在定理即可判斷
解答 解:令f(x)-lnx=t,由函數(shù)f(x)單調(diào)可知t為正常數(shù),
則f(x)=t+lnx,且f(t)=1,即t+lnt=1,
解:根據(jù)題意,對(duì)任意的x∈(0,+∞),都有f[f(x)-lnx]=1,
又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),
則f(x)-lnx為定值,
設(shè)t=f(x)-lnx,
則f(x)=lnx+t,
又由f(t)=1,
即lnt+t=1,
解得:t=1,
則f(x)=lnx+1,f′(x)=$\frac{1}{x}$,
∴f(x)-f′(x)=lnx+1-$\frac{1}{x}$=1,
即lnx-$\frac{1}{x}$=0,
則方程f(x)-f′(x)=1的解可轉(zhuǎn)化成方程lnx-$\frac{1}{x}$=0的解,
令h(x)=lnx-$\frac{1}{x}$,
而h(2)=ln2-$\frac{1}{2}$>0,h(1)=ln1-1<0,
∴方程lnx-$\frac{1}{x}$=0的解所在區(qū)間為(1,2),
∴方程f(x)-f′(x)=e的解所在區(qū)間為(1,2),
故答案為:③.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算和零點(diǎn)存在定理,關(guān)鍵是求出f(x),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com