A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
分析 對于任意實數(shù)t恒有|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥|$\overrightarrow{BC}$|,故點B到直線AC的最短距離為BC,BC⊥AC,然后,求解即可.
解答 解:對于任意實數(shù)t恒有|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥|$\overrightarrow{BC}$|,故點B到直線AC的最短距離為BC,
∴BC⊥AC,
∴c=90°,
∵A=$\frac{π}{3}$,|$\overrightarrow{AC}$|=m,
∴|$\overrightarrow{BC}$|=$\sqrt{3}$m,
∴S△ABC=$\frac{1}{2}$m×$\sqrt{3}$m=$\frac{\sqrt{3}}{2}$m2,
∵m∈[1,2],
∴△ABC面積的最大值是$\frac{\sqrt{3}}{2}$×22=2$\sqrt{3}$,
故選:D.
點評 本題主要考查兩個向量的數(shù)量積的定義,兩個向量垂直的性質(zhì),屬于中檔題
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在任意位置,直線AC與直線BD垂直 | |
B. | 在任意位置,直線AB與直線CD垂直 | |
C. | 在任意位置,直線AD與直線BC垂直 | |
D. | 對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{1}{2}$,16] | B. | [$\frac{1}{2}$,16] | C. | [$\frac{1}{2}$,4] | D. | [1,16] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com