分析 利用向量的數(shù)量積公式,結(jié)合雙曲線的方程,即可求出y0的取值范圍.
解答 解:由題意,∵∠F1MF2為鈍角,
∴$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=(-$\sqrt{3}$-x0,-y0)•($\sqrt{3}$-x0,-y0)=x02-3+y02=3y02-1<0,且3y02-1≠-1
∴-$\frac{\sqrt{3}}{3}$<y0<$\frac{\sqrt{3}}{3}$且y0≠-1.
∴y0的取值范圍是$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$.
故答案為:$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$.
點(diǎn)評(píng) 本題考查向量的數(shù)量積公式、雙曲線的方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件 | |
B. | 若p:?x0∈R,x02-x0-1>0,則¬p:?x∈R,x2-x-1<0 | |
C. | 若p∧q為假命題,則p,q均為假命題 | |
D. | “若$α=\frac{π}{6}$,則$sinα=\frac{1}{2}$”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com