8.設(shè)函數(shù)f(x)=1-$\sqrt{x+1}$,g(x)=ln(ax2-3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實數(shù)a的最大值為(  )
A.2B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

分析 設(shè)g(x)=ln(ax2-3x+1)的值域為A,則(-∞,0]⊆A,從而h(x)=ax2-3x+1至少要取遍(0,1]中的每一個數(shù),又h(0)=1,由此能求出實數(shù)a的最大值.

解答 解:設(shè)g(x)=ln(ax2-3x+1)的值域為A,
∵f(x)=1-$\sqrt{x+1}$在[0,+∞)上的值域為(-∞,0],
∴(-∞,0]⊆A,
∴h(x)=ax2-3x+1至少要取遍(0,1]中的每一個數(shù),
又h(0)=1,
∴實數(shù)a需要滿足a≤0或$\left\{\begin{array}{l}{a>0}\\{△=9-4a≥0}\end{array}\right.$,
解得a≤$\frac{9}{4}$.
∴實數(shù)a的最大值為$\frac{9}{4}$.
故選:B.

點評 本題考查實數(shù)的最大值的求法,是中檔題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.1977年是高斯誕辰200周年,為紀(jì)念這位偉大的數(shù)學(xué)家對復(fù)數(shù)發(fā)展所做出的杰出貢獻(xiàn),德國特別發(fā)行了一枚郵票(如圖).這枚郵票上印有4個復(fù)數(shù),其中的兩個復(fù)數(shù)的和:(4+4i)+(-5+6i)=(  )
A.-1+10iB.-2+9iC.9-2iD.10-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若橢圓C1:$\frac{x^2}{4}$+$\frac{y^2}{b^2}$=1(0<b<2)的離心率等于$\frac{{\sqrt{3}}}{2}$,拋物線C2:x2=2py(p>0)的焦點在橢圓C1的頂點上.
(1)求拋物線C2的方程;
(2)設(shè)M(x1,y1)和N(x2,y2)為拋物線C2上的兩個動點,其中y1≠y2且y1+y2=4,線段MN的垂直平分線l與y軸交于點P,求△MNP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{x}$+x,x∈[3,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并利用單調(diào)性定義證明;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列{an}的前n項和為Sn,S5=4a3+6,且a2,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)如果a1≠a5,求數(shù)列{$\frac{1}{{S}_{n}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)在其定義域中,既是奇函數(shù)又是增函數(shù)的( 。
A.y=x+1B.y=-x2C.y=x|x|D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=x${\;}^{\frac{1}{3}}$+log${\;}_{\frac{1}{3}}$x,則f(27)等于( 。
A.2B.1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點P(-1,1)和點Q(2,2),若直線l:x+my+m=0與線段PQ沒有公共點,則實數(shù)m的取值范圍是m<-$\frac{2}{3}$或m$>\frac{1}{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線$l\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ-2cosθ,若直線l與曲線C相交與A、B兩點,求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案