5.已知函數(shù)f(x)=4x2+kx-1在區(qū)間[1,2]上是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,-16]∪[-8,+∞)B.[-16,-8]C.(-∞,-8)∪[-4,+∞)D.[-8,-4]

分析 求出f(x)的對(duì)稱軸方程,討論f(x)在區(qū)間[1,2]上是單調(diào)增函數(shù)和減函數(shù),注意對(duì)稱軸和區(qū)間的關(guān)系,解不等式即可得到所求范圍.

解答 解:函數(shù)f(x)=4x2+kx-1的對(duì)稱軸為x=-$\frac{k}{8}$,
若f(x)在區(qū)間[1,2]上是單調(diào)增函數(shù),
可得-$\frac{k}{8}$≤1,解得k≥-8;
若f(x)在區(qū)間[1,2]上是單調(diào)減函數(shù),
可得-$\frac{k}{8}$≥2,解得k≤-16.
綜上可得k的范圍是[-8,+∞)∪[-∞,-16].
故選:A.

點(diǎn)評(píng) 本題考查二次函數(shù)的單調(diào)性的判斷,注意運(yùn)用分類討論的思想方法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z=$\frac{15i}{3+4i}$,則z的虛部為( 。
A.-$\frac{9}{5}$iB.$\frac{9}{5}$iC.-$\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{x}$+x,x∈[3,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并利用單調(diào)性定義證明;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)在其定義域中,既是奇函數(shù)又是增函數(shù)的( 。
A.y=x+1B.y=-x2C.y=x|x|D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=x${\;}^{\frac{1}{3}}$+log${\;}_{\frac{1}{3}}$x,則f(27)等于( 。
A.2B.1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知冪函數(shù)y=f(x)的圖象過點(diǎn)(2,$\frac{\sqrt{2}}{2}$),若f(m)=2,則m=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)P(-1,1)和點(diǎn)Q(2,2),若直線l:x+my+m=0與線段PQ沒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是m<-$\frac{2}{3}$或m$>\frac{1}{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知不等式$\frac{k{x}^{2}+kx+6}{{x}^{2}+x+2}$>2對(duì)任意x∈R恒成立,則k的取值范圍為[2,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個(gè)正方體被一個(gè)平面截去一部分后,剩余部分的三視圖如圖,則截去部分體積與剩余部分體積的比值為$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案