14.下列命題:
①奇函數(shù)f(x)必滿足f(0)=0;
②函數(shù)f(x)=loga(3x-2)+1的圖象過定點(1,1)
③A=R+,B=R,$f:x→y=\frac{1}{x+1}$,則f為A到B的映射;
④在同一坐標(biāo)系中,y=2x與y=-2-x的圖象關(guān)于原點O對稱.
其中真命題的序號是②③④(把你認(rèn)為正確的命題的序號都填上).

分析 ①根據(jù)奇函數(shù)的定義舉一個反例.
②根據(jù)對數(shù)函數(shù)過定點的性質(zhì)進行求解.
③根據(jù)映射的定義進行判斷.
④根據(jù)指數(shù)函數(shù)的對稱性進行判斷.

解答 解:①函數(shù)f(x)=$\frac{1}{x}$是奇函數(shù)f(x),但不滿足f(0)=0;故①錯誤,
②由3x-2=1,得x=1,此時f(1)=loga1+1=0+1=1,即函數(shù)f(x)的圖象過定點(1,1),故②正確,
③A=R+,B=R,$f:x→y=\frac{1}{x+1}$,則f為A到B的映射成立,故③正確,
④在同一坐標(biāo)系中,y=2x與y=-2-x的圖象關(guān)于原點O對稱.正確,故④正確,
故答案為:②③④

點評 本題主要考查命題的真假判斷,涉及函數(shù)的圖象和性質(zhì),涉及的知識點較多,難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,左頂點為A(-4,0),過點A作斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.
(1)求橢圓C的方程; 
(2)已知P為AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點Q的坐標(biāo);若不存在說明理由;
(3)若過O點作直線l的平行線交橢圓C于點M,求$\frac{AD+AE}{OM}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.動圓M與圓C1:(x+1)2+y2=$\frac{1}{8}$外切,同時與圓C2:x2-2x+y2-$\frac{41}{8}$=0內(nèi)切,不垂直于x軸的直線l交動圓圓心M的軌跡C于A,B兩點
(1)求點M的軌跡C的方程
(2)若C與x軸正半軸交于A2,以AB為直徑的圓過點A2,試問直線l是否過定點.若是,請求出該定點坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}1+lg(2-x),x<1\\{10^{x-1}},x≥1\end{array}$,則f(-98)+f(lg30)=( 。
A.5B.6C.9D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,是2007年在廣州舉行的全國少數(shù)民族運動會上,七位評委為某民族舞蹈打出的分?jǐn)?shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( 。
A.84,4.84B.84,1.6C.85,2.4D.85,1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,O為坐標(biāo)原點,過點P(4,0)且斜率為k的直線l交拋物線y2=4x于M(x1,y1),N(x2,y2)兩點.
(1)寫出直線l的方程.
(2)求x1x2與y1y2的值.
(3)求證:OM⊥ON.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)O為△ABC的外心,且滿足$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC.}$則∠ACB=120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點分別為A1,A2,上頂點為B,從橢圓上一點P向x軸作垂線,垂足恰為左焦點F,且A2B∥OP,|FA2|=$\sqrt{10}$+$\sqrt{5}$,過A2作x軸的垂線l,點M是l上任意一點,A1M交橢圓于點N,則$\overrightarrow{OM}$•$\overrightarrow{ON}$=( 。
A.10B.5
C.15D.隨點M在直線l上的位置變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某校的一個社會實踐調(diào)查小組,在對該校學(xué)生的良好“用眼習(xí)慣”的調(diào)查中,隨機發(fā)放了120分問卷.對收回的100份有效問卷進行統(tǒng)計,得到如2×2下列聯(lián)表:
做不到科學(xué)用眼能做到科學(xué)用眼合計
451055
301545
合計7525100
(1)現(xiàn)按女生是否能做到科學(xué)用眼進行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機抽取3份,并記其中能做到科學(xué)用眼的問卷的份數(shù)X,試求隨機變量X的分布列和數(shù)學(xué)期望;
(2)若在犯錯誤的概率不超過P的前提下認(rèn)為良好“用眼習(xí)慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的P的值應(yīng)為多少?請說明理由.
附:獨立性檢驗統(tǒng)計量${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
獨立性檢驗臨界值表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

同步練習(xí)冊答案