分析 (I)化簡函數(shù)f(x),求出f(x)得最大值的x的取值集合;
(II)求函數(shù)g(x)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系解g(x)的單調(diào)遞減區(qū)間.
解答 解:( I)∵$f(x)=cosx-\sqrt{3}sinx=2cos(x+\frac{π}{3})$,
當(dāng)$x+\frac{π}{3}=2kπ$,即$x=2kπ-\frac{π}{3}$時(shí),f(x)取得最大值2.
所以使得f(x)取得最大值的x的取值集合為$\{x|x=2kπ-\frac{π}{3},k∈Z\}$.
( II)∵$g(x)=x+cosx-\sqrt{3}sinx$,
∴$g'(x)=1-sinx-\sqrt{3}cosx$.
令g'(x)<0,得$1-sinx-\sqrt{3}cosx<0$,
∴$sinx+\sqrt{3}cosx>1$,
∴$2sin(x+\frac{π}{3})>1$,
∴$sin(x+\frac{π}{3})>\frac{1}{2}$,
∴$2kπ+\frac{π}{6}<x+\frac{π}{3}<kπ+\frac{5π}{6}$,k∈Z,
∴$2kπ-\frac{π}{6}<x<2kπ+\frac{π}{2}$,k∈Z,
∴g(x)的單調(diào)遞減區(qū)間為$[2kπ-\frac{π}{6},2kπ+\frac{π}{2}]$,k∈Z.
點(diǎn)評 本題主要考查函數(shù)單調(diào)性和單調(diào)區(qū)間的求解,利用正弦函數(shù)的單調(diào)性的性質(zhì)或者導(dǎo)數(shù)法時(shí)解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -a>-b | B. | a+c>b+c | C. | $\frac{1}{a}>\frac{1}$ | D. | (-a)2>(-b)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{5}{3}$ | C. | -$\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com