分析 (Ⅰ)根據(jù)正弦函數(shù)的圖象與性質(zhì),令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$求出x的取值范圍即可;
(Ⅱ)根據(jù)x∈[0,$\frac{π}{2}$]求出2x-$\frac{π}{3}$的取值范圍,再求出y=sin(2x-$\frac{π}{3}$)最值即可.
解答 解:(Ⅰ)令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,k∈Z,
所以函數(shù)y=sin(2x-$\frac{π}{3}$)的單調(diào)增區(qū)間為
[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z; …(6分)
(Ⅱ)因?yàn)閤∈[0,$\frac{π}{2}$],所以2x∈[0,π],
(2x-$\frac{π}{3}$)∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
所以當(dāng)2x-$\frac{π}{3}$=-$\frac{π}{3}$,即x=0時(shí),
y=sin(2x-$\frac{π}{3}$)取得最小值-$\frac{\sqrt{3}}{2}$;
當(dāng)2x-$\frac{π}{3}$=$\frac{π}{2}$,即x=$\frac{5π}{12}$時(shí),
y=sin(2x-$\frac{π}{3}$)取得最大值1. …(12分)
點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | -2015 | D. | -2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$($\overrightarrow{a}+\overrightarrow$) | B. | -$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$) | C. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}\overrightarrow$ | D. | $\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com